Advertisement

Jahn–Teller Effect and Spin-Orbit Coupling in Heavy Alkali Trimers

  • Andreas W. Hauser
  • Gerald Auböck
  • Wolfgang E. Ernst
Chapter
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 23)

Abstract

Triatomic alkali-metal clusters in their high-spin manifolds of electronically excited states provide the chance to investigate the spectroscopic consequences of the combination of Jahn–Teller effect and spin-orbit coupling with powerful methods of quantum chemistry such as open-shell coupled cluster approaches and multireference Rayleigh-Schroedinger perturbation theory. With respect to available experimental data the 24E ← 14A2 transitions are selected to document the quenching of the paradigmatic E ⊗ e Jahn–Teller distortion with increasing spin-orbit coupling. The simulated spectra for potassium, rubidium and cesium trimers are provided together with all relevant parameters such as harmonic frequencies, Jahn–Teller parameters and spin-orbit splittings obtained from the ab initio approach. Beside that, the molecular geometries and formation energies of these van der Waals molecules are also listed in this chapter.

Keywords

Teller Effect Magnetic Circular Dichroism Angular Momentum Projection Magnetic Circular Dichroism Spectrum Electronic Angular Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

AWH gratefully acknowledges support from the Graz Advanced School of Science, a cooperation project between TU Graz and the University of Graz, and the Austrian Science Fund (FWF, Grant No. P19759-N20).

References

  1. 1.
    Bersuker IB (2001) Chem Rev 101:1067CrossRefGoogle Scholar
  2. 2.
    Nagl J, Auböck G, Hauser AW, Allard O, Callegari C, Ernst WE (2008) Phys Rev Lett 100(6):063001. doi:10.1103/PhysRevLett.100.063001CrossRefGoogle Scholar
  3. 3.
    Nagl J, Auböck G, Hauser AW, Allard O, Callegari C, Ernst WE (2008) J Chem Phys 128(15):154320CrossRefGoogle Scholar
  4. 4.
    Auböck G, Nagl J, Callegari C, Ernst WE (2008) J Chem Phys 129(11):114501CrossRefGoogle Scholar
  5. 5.
    Hauser AW, Auböck G, Callegari C, Ernst WE (2010) J Chem Phys 132(16):164310CrossRefGoogle Scholar
  6. 6.
    Hauser AW, Callegari C, Soldán P, Ernst WE (2008) J Chem Phys 129:044307CrossRefGoogle Scholar
  7. 7.
    Hauser AW, Callegari C, Soldán P, Ernst WE (2010) Chem Phys 375(1): 73-84CrossRefGoogle Scholar
  8. 8.
    (2001) Special issue on Helium nanodroplets: a novel medium for chemistry and physics. J Chem Phys 115(22)Google Scholar
  9. 9.
    Lim IS, Schwerdtfeger P, Metz B, Stoll H (2005) J Chem Phys 122:104103CrossRefGoogle Scholar
  10. 10.
    Müller W, Flesch J, Meyer W (1984) J Chem Phys 80(7):3297CrossRefGoogle Scholar
  11. 11.
    Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98(11):8718CrossRefGoogle Scholar
  12. 12.
    Urban M, Neogrády P, Hubač I (1997) In Bartlett RJ (ed) Recent advances in coupled cluster methods. Recent advances in computational chemistry, vol 3. World Scientific, Singapore, pp 275–306Google Scholar
  13. 13.
    Xie F, Sovkov VB, Lyyra AM, Li D, Ingram S, Bai J, Ivanov VS, Magnier S, Li L (2009) J Chem Phys 130(5):051102CrossRefGoogle Scholar
  14. 14.
    Li D, Xie F, Li L, Magnier S, Sovkov V, Ivanov V (2007) Chem Phys Lett 441(1–3):39CrossRefGoogle Scholar
  15. 15.
    Guerout R, Soldan P, Aymar M, Deiglmayr J, Dulieu O (2009) Int J Quant Chem 109(14, Sp. Iss. SI):3387Google Scholar
  16. 16.
    Thompson TC, Izmirlian GJ, Lemon SJ, Truhlar DG (1985) J Chem Phys 82:5597CrossRefGoogle Scholar
  17. 17.
    Cocchini F, Upton TH, Andreoni W (1988) J Chem Phys 88:6068CrossRefGoogle Scholar
  18. 18.
    Werner HJ, Meyer W (1980) J Chem Phys 73(5):2342CrossRefGoogle Scholar
  19. 19.
    Werner HJ, Meyer W (1981) J Chem Phys 74(10):5794CrossRefGoogle Scholar
  20. 20.
    Werner HJ, Knowles PJ (1985) J Chem Phys 82(11):5053CrossRefGoogle Scholar
  21. 21.
    Knowles PJ, Werner HJ (1985) Chem Phys Lett 115(3):259CrossRefGoogle Scholar
  22. 22.
    Celani P, Werner HJ (2000) J Chem Phys 112:5546CrossRefGoogle Scholar
  23. 23.
    Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T (2006) Molpro, version 2006.1, a package of ab initio programs. See http://www.molpro.net
  24. 24.
    Roos B, Andersson K (1995) Chem Phys Lett 245:215CrossRefGoogle Scholar
  25. 25.
    Bünermann O, Mudrich M, Weidemüller M, Stienkemeier F (2004) J Chem Phys 121(18):8880CrossRefGoogle Scholar
  26. 26.
    Ernst WE, Huber R, Jiang S, Beuc R, Movre M, Pichler G (2006) J Chem Phys 124(2):024313CrossRefGoogle Scholar
  27. 27.
    Hauser AW, Callegari C, Ernst WE (2009) In Lipscomb WN, Prigogine I, Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Advances in the theory of atomic and molecular systems. Progress in theoretical chemistry and physics, vol 20. Springer, Netherlands, pp 201–215Google Scholar
  28. 28.
    Barckholtz TA, Miller TA (1998) Int Rev Phys Chem 17(4):435CrossRefGoogle Scholar
  29. 29.
    Schön J, Köppel H (1998) J Chem Phys 108(4):1503CrossRefGoogle Scholar
  30. 30.
    Koizumi H, Sugano S (1995) J Chem Phys 102:4472CrossRefGoogle Scholar
  31. 31.
    Domcke W, Mishra S, Poluyanov LV (2006) Chem Phys 322:405CrossRefGoogle Scholar
  32. 32.
    Poluyanov LV, Domcke W (2008) Chem Phys 352:125CrossRefGoogle Scholar
  33. 33.
    Meiswinkel R, Köppel H (1989) Chem Phys 129(3):463CrossRefGoogle Scholar
  34. 34.
    García-Fernández P, Bersuker I, Aramburu J, Barriuso M, Moreno M (2005) Phys Rev B 71:184117CrossRefGoogle Scholar
  35. 35.
    Bersuker IB (2006) The Jahn-Teller effect. University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Andreas W. Hauser
    • 1
  • Gerald Auböck
    • 2
  • Wolfgang E. Ernst
    • 1
  1. 1.Institute of Experimental PhysicsGraz University of TechnologyGrazAustria
  2. 2.Institut des sciences et inǵenierie chimiquesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations