Advertisement

Classical Cosmological Tests

  • Yurij Baryshev
  • Pekka Teerikorpi
Part of the Astrophysics and Space Science Library book series (ASSL, volume 383)

Abstract

In science, an experiment is usually a way of investigating “cause-and-effect” processes in Nature by creating a special situation where we can vary the physical conditions and see how this affects the outcome of the process. Obviously, in large-scale physics such operations are quite limited and an experiment rather means a carefully planned set of observations directed to test a theoretical prediction. Modern physics views the observable universe as a place where the physical laws may be studied on the largest available scales. The cosmic laboratory has many features which complicate the work, including non-locality of observations and selection effects always putting their finger on observed relations.

Keywords

Dark Energy Cosmological Model Globular Cluster Surface Brightness Angular Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguirre, A.N.: Dust versus cosmic acceleration. Astrophys. J. 512, L19 (1999) ADSCrossRefGoogle Scholar
  2. Amanullah, R., Lidman, C., Rubin, D., et al.: Spectra and HST light curves of six type Ia supernovea at 0.511<z<1.12 and the Union2 compilation. Astrophys. J. 716, 712 (2010) ADSCrossRefGoogle Scholar
  3. Arp, H.C.: A very small, condensed galaxy. Astrophys. J. 142, 402 (1965) ADSCrossRefGoogle Scholar
  4. Bahcall, J., Wolf, R.A.: Fine-structure transitions. Astrophys. J. 152, 701 (1968) ADSCrossRefGoogle Scholar
  5. Baryshev, Yu.: Modern state of observational cosmology. VINTI, Itogi Nauki i Techniki, Series Classical Field Theory and Gravity Theory, vol. 4: Gravitation and Cosmology, p. 89 (1992b) (in Russian) Google Scholar
  6. Baryshev, Yu.V., Teerikorpi, P.: Kinematical models of double radio sources and the unified scheme I. Theoretical probability distributions of observable quantities. Astron. Astrophys. 295, 11 (1995) ADSGoogle Scholar
  7. Benetti, S., Cappellaro, E., Mazzali, P.A., et al.: The diversity of Type Ia supernovae: Evidence for systematics? Astrophys. J. 623, 1011 (2005) ADSCrossRefGoogle Scholar
  8. Bernstein, R.A., Freedman, W.L., Madore, B.F.: The first detection of the extragalactic background light at 3000, 5500, and 8000 Å. Astrophys. J. 571, 85 (2002) ADSCrossRefGoogle Scholar
  9. Bernstein, R.A., Freedman, W.L., Madore, B.F.: Corrections of errors in “The first detection of the extragalactic background light at 3000, 5500, and 8000 Å”. Astrophys. J. 632, 713 (2005) ADSCrossRefGoogle Scholar
  10. Binggeli, B., Tarenghi, M., Sandage, A.: The abundance and morphological segregation of dwarf galaxies in the field. Astron. Astrophys. 228, 42 (1990) ADSGoogle Scholar
  11. Blondin, S., Davis, T.M., Krisciunas, K.: Time dilation in Type Ia supernova spectra at high redshift. Astrophys. J. 682, 724 (2008) ADSCrossRefGoogle Scholar
  12. Bouwens, R.J., Illingworth, G.D., Blakeslee, J.P., Broadhurst, T.J., Franx, M.: Galaxy size evolution at high redshift and surface brightness selection effects: Constraints from the Hubble Ultra Deep Field. Astrophys. J. 611, L1 (2004) ADSCrossRefGoogle Scholar
  13. Bouwens, R.J., Illingworth, G.D., Labbe, I., et al.: A candidate redshift z≈10 galaxy and rapid changes in that population at an age of 500 Myr. Nature 469, 504 (2011) ADSCrossRefGoogle Scholar
  14. Branch, D.: High-velocity matter in a classical Type I supernova: The demise of Type Ia homogeneity. Astrophys. J. 316, L81 (1987) ADSCrossRefGoogle Scholar
  15. Bruzual, G., Charlot, S.: Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000 (2003) ADSCrossRefGoogle Scholar
  16. Buchalter, A., Helfand, D.J., Becker, R.H., White, R.L.: Constraining Ω0 with the angular size–redshift relation of double-lobed quasars in the FIRST survey. Astrophys. J. 494, 503 (1998) ADSCrossRefGoogle Scholar
  17. Célérier, M.-N., Bolejko, K., Krasiński, A.: A (giant) void is not mandatory to explain away dark energy with a Lemaître-Tolman model. Astron. Astrophys. 518, A21 (2010) CrossRefGoogle Scholar
  18. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology (2011). arXiv:1106.2476 [astro-ph]
  19. Cohen, S.E., Windhorst, R.A., Odewahn, S.C., Chiarenza, C.A., Driver, S.P.: The Hubble Space Telescope WFPC2 B-band parallel survey: A study of galaxy morphology for magnitudes 18≤B≤27. Astron. J. 125, 1762 (2003) ADSCrossRefGoogle Scholar
  20. Crawford, D.F.: Angular size in a static universe. Astrophys. J. 440, 446 (1995) ADSCrossRefGoogle Scholar
  21. Disney, M.J.: Visibility of galaxies. Nature 263, 573 (1976) ADSCrossRefGoogle Scholar
  22. Djorgovski, S., Spinrad, H.: Towards the application of a metric size function in galactic evolution and cosmology. Astrophys. J. 251, 417 (1981) ADSCrossRefGoogle Scholar
  23. Fabbri, R., Melchiorri, F., Natale, V.: The Sunyaev-Zeldovich effect in the millimetric region. Astrophys. Space Sci. 59, 223 (1978) ADSCrossRefGoogle Scholar
  24. Fall, S.M., Efstathiou, G.: Formation and rotation of disc galaxies with haloes. Mon. Not. R. Astron. Soc. 193, 189 (1980) ADSGoogle Scholar
  25. Ferguson, H.C., Dickinson, M., Giavalisco, M., et al.: The size evolution of high-redshift galaxies. Astrophys. J. 600, L107 (2004) ADSCrossRefGoogle Scholar
  26. Gabrielli, A., Sylos Labini, F., Joyce, M., Pietronero, L.: Statistical Physics for Cosmic Structures. Springer, Berlin (2005) Google Scholar
  27. Gardner, J.P., Cowie, L.L., Wainscoat, R.J.: Galaxy number counts from K=10 to K=23. Astrophys. J. 415, L9 (1993) ADSCrossRefGoogle Scholar
  28. Goldhaber, G., Groom, D.E., Kim, A., et al.: Timescale stretch parameterization of Type Ia supernova B-band light curves. Astrophys. J. 558, 359 (2001) ADSCrossRefGoogle Scholar
  29. Gudmundsson, E.H., Björnsson, G.: Dark energy and the observable universe. Astrophys. J. 565, 1 (2002) ADSCrossRefGoogle Scholar
  30. Hamuy, M., Phillips, M.M., Maza, J., Suntzeff, N.B., Schommer, R.A., Aviles, R.: Hubble diagram of distant type IA supernovae. Astron. J. 109, 1 (1995) ADSCrossRefGoogle Scholar
  31. Hawkins, M.R.S.: On time dilation in quasar light curves. Mon. Not. R. Astron. Soc. 405, 1940 (2010) ADSGoogle Scholar
  32. Horellou, C., Nord, M., Johansson, D., Lévy, A.: Probing the cosmic microwave background temperature using the Sunyaev-Zeldovich effect. Astron. Astrophys. 441, 435 (2005) ADSCrossRefGoogle Scholar
  33. Howell, A., Sullivan, M., Conley, A., Carlberg, R.: Predicted and observed evolution in the mean properties of Type Ia supernovae with redshift. Astrophys. J. 667, L37 (2007) ADSCrossRefGoogle Scholar
  34. Hoyle, F.: The relation of radio astronomy to cosmology. In: Bracewell, R.N. (ed.) Radio Astronomy. IAU Symp., vol. 9, p. 529 (1959) Google Scholar
  35. Hoyle, F., Fowler, W.: Nucleosynthesis in supernovae. Astrophys. J. 132, 565 (1960) ADSCrossRefGoogle Scholar
  36. Hu, W., Dodelson, S.: Cosmic microwave background anisotropies. Annu. Rev. Astron. Astrophys. 40, 171 (2002) ADSCrossRefGoogle Scholar
  37. Hubble, E., Tolman, R.: Two methods of investigating the nature of the nebular red-shift. Astrophys. J. 82, 302 (1935) ADSCrossRefzbMATHGoogle Scholar
  38. Impey, C., Bothun, G.: Low surface brightness galaxies. Annu. Rev. Astron. Astrophys. 35, 267 (1997) ADSCrossRefGoogle Scholar
  39. Jaakkola, T.: Equilibrium cosmology. In: Arp, H.C., Keys, C.R., Rudnicki, K. (eds.) Progress in New Cosmologies: Beyond the Big Bang, p. 111. Plenum, New York (1993) Google Scholar
  40. Jackson, J.C., Dogdson, M.: Deceleration without dark matter. Mon. Not. R. Astron. Soc. 285, 806 (1997) ADSGoogle Scholar
  41. Jackson, J.C., Jannetta, A.L.: Legacy data and cosmological constraints from the angular-size/redshift relation for ultra-compact radio sources. J. Cosmol. Astropart. Phys. 0611, 002 (2006) ADSCrossRefGoogle Scholar
  42. Kapahi, V.K.: The angular size-redshift relation as a cosmological tool. In: Observational Cosmology. IAU Symp, vol. 124, p. 251. Riedel, Dordrecht (1987) CrossRefGoogle Scholar
  43. Kellermann, K.I.: The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources. Nature 361, 134 (1993) ADSCrossRefGoogle Scholar
  44. Kowalski, M., Rubin, D., Aldering, G., et al.: Improved cosmological constraints from new, old, and combined supernova data sets. Astrophys. J. 686, 749 (2008) ADSCrossRefGoogle Scholar
  45. Kraan-Korteweg, R.C., Tammann, G.: A catalogue of galaxies within 10 Mpc. Astron. Nachr. 300, 181 (1979) ADSCrossRefGoogle Scholar
  46. LaViolette, P.A.: Is the universe really expanding? Astrophys. J. 301, 544 (1986) ADSCrossRefGoogle Scholar
  47. Leibundgut, B.: Cosmological implications from observations of Type Ia supernovae. Annu. Rev. Astron. Astrophys. 39, 67 (2001) ADSCrossRefGoogle Scholar
  48. Lilly, S.J., Cowie, L.L., Gardner, J.P.: A deep imaging and spectroscopic survey of faint galaxies. Astrophys. J. 369, 79 (1991) ADSCrossRefGoogle Scholar
  49. Liske, J., Grazian, A., Vanzella, E., et al.: Cosmic dynamics in the era of extremely large telescopes. Mon. Not. R. Astron. Soc. 386, 1192 (2008) ADSCrossRefGoogle Scholar
  50. Loeb, A.: Direct measurement of cosmological parameters from the cosmic deceleration of extragalactic objects. Astrophys. J. 499, L111 (1998) ADSCrossRefGoogle Scholar
  51. LoSecco, J., Mathews, G., Wang, Y.: Prospects for constraining cosmology with the extragalactic cosmic microwave background temperature. Phys. Rev. D 64, 123002 (2001) ADSCrossRefGoogle Scholar
  52. Lubin, L., Sandage, A.: The Tolman surface brightness test for the reality of the expansion. IV. Astron. J. 122, 1084 (2001) ADSCrossRefGoogle Scholar
  53. Luzzi, G., Shimon, M., Lamagna, L., et al.: Redshift dependence of the cosmic microwave background temperature from Sunyaev-Zeldovich measurements. Astrophys. J. 705, 1122 (2009) ADSCrossRefGoogle Scholar
  54. Maeda, K., Benetti, S., Stritzinger, M., et al.: An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae. Nature 466, 82 (2010) ADSCrossRefGoogle Scholar
  55. Mattila, K.: Observations of the extragalactic background light. In: The Galactic and Extragalactic Background Radiation, p. 257. Kluwer Academic, Dordrecht (1990) CrossRefGoogle Scholar
  56. Mattila, K.: Has the optical extragalactic background light been detected? Astrophys. J. 591, 119 (2003) ADSCrossRefGoogle Scholar
  57. Mattsson, T.: Dark energy as a mirage. Gen. Relativ. Gravit. 42, 567 (2010) MathSciNetADSCrossRefzbMATHGoogle Scholar
  58. McGaugh, S.: A possible local counterpart to the excess population of faint galaxies. Nature 367, 538 (1994) ADSCrossRefGoogle Scholar
  59. Ménard, B., Kilbinger, M., Scranton, R.: On the impact of intergalactic dust on cosmology with Type Ia supernovae. Mon. Not. R. Astron. Soc. 406, 1815 (2010) ADSGoogle Scholar
  60. Minchin, R.F., Disney, M.J., Parker, Q.A., et al.: The cosmological significance of low surface brightness galaxies found in a deep blind neutral hydrogen survey. Mon. Not. R. Astron. Soc. 355, 1303 (2004) ADSCrossRefGoogle Scholar
  61. Molaro, P., Levshakov, S., et al.: The cosmic microwave background radiation temperature at z=3.025 toward QSO 0347-3819. Astron. Astrophys. 381, L64 (2002) ADSCrossRefGoogle Scholar
  62. Moles, M., Campos, A., Kjaergaard, P., Fasano, G., Bettoni, D.: On the use of scaling relations for the Tolman test. Astrophys. J. 495, L31 (1998) ADSCrossRefGoogle Scholar
  63. Nabokov, N.V., Baryshev, Yu.V.: Classical cosmological tests for galaxies of the Hubble ultra deep field. Astrophys. Bull. 63, 244 (2008a) ADSCrossRefGoogle Scholar
  64. Narlikar, J.: Introduction to Cosmology, 2nd edn. Cambridge University Press, Cambridge (1993) zbMATHGoogle Scholar
  65. Nilsson, K., Valtonen, M., Kotilainen, J., Jaakkola, T.: On the redshift–apparent size diagram of double radio sources. Astrophys. J. 413, 453 (1993) ADSCrossRefGoogle Scholar
  66. Padovani, P., Urry, C.M.: Luminosity functions, relativistic beaming and unified theories of high-luminosity radio sources. Astrophys. J. 387, 449 (1992) ADSCrossRefGoogle Scholar
  67. Peebles, P.J.E.: Principles of Physical Cosmology. Princeton Univ. Press, Princeton (1993) Google Scholar
  68. Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Measurements of Ω and Λ from 42 high–redshift supernovae. Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  69. Poggianti, B.: K and evolutionary corrections from UV to IR. Astron. Astrophys. Suppl. Ser. 122, 399 (1997) ADSCrossRefGoogle Scholar
  70. Refsdal, S., Surdej, J.: Gravitational lenses. Rep. Prog. Phys. 56, 117 (1994) ADSCrossRefGoogle Scholar
  71. Rephaeli, Y.: On the determination of the degree of cosmological Compton distortions and the temperature of the cosmic blackbody radiation. Astrophys. J. 241, 858 (1980) ADSCrossRefGoogle Scholar
  72. Riess, A.G., Filippenko, A.V., Challis, P., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  73. Riess, A.G., Strolger, L.-G., Tonry, J., et al.: Type Ia supernova discoveries at z>1 from the HST: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004) ADSCrossRefGoogle Scholar
  74. Robaina, A.R., Cepa, J.: Redshift-distance relations from Type Ia supernova observations. New constraints on grey dust models. Astron. Astrophys. 464, 465 (2007) ADSCrossRefGoogle Scholar
  75. Rosenbaum, S.D., Bomans, D.J.: The environment of low surface brightness galaxies. Astron. Astrophys. 422, L5 (2004) ADSCrossRefGoogle Scholar
  76. Rust, B.W.: Use of supernovae light curves for testing the expansion hypothesis and other cosmological relations. Ph.D. Thesis, Oak Ridge National Lab., TN (1974) Google Scholar
  77. Sandage, A.: The ability of the 200-inch telescope to discriminate between selected world models. Astrophys. J. 133, 355 (1961) MathSciNetADSCrossRefGoogle Scholar
  78. Sandage, A.: The change of redshift and apparent luminosity of galaxies due to the deceleration of the expanding universes. Astrophys. J. 136, 319 (1962) ADSCrossRefGoogle Scholar
  79. Sandage, A.: Observational tests of world models. Annu. Rev. Astron. Astrophys. 26, 561 (1988a) ADSCrossRefGoogle Scholar
  80. Sandage, A.: Astronomical problems for the next three decades. In: Mamaso, A., Munch, G. (eds.) Key Problems in Astronomy and Astrophysics. Cambridge University Press, Cambridge (1995a) Google Scholar
  81. Sandage, A.: Practical cosmology: Inventing the past. In: Binggeli, Buser, R. (eds.) The Deep Universe, pp. 1–232. Springer, Berlin (1995b) Google Scholar
  82. Sandage, A.: The Tolman surface brightness test for the reality of the expansion. V. Provenance of the test and a new representation of the data for three remote Hubble space telescope galaxy clusters. Astron. J. 139, 728 (2010) ADSCrossRefGoogle Scholar
  83. Sandage, A., Tammann, G.A., Federspiel, M.: Bias properties of extragalactic distance indicators. IV. Demonstration of the population incompleteness bias inherent in the Tully-Fisher method applied to clusters. Astrophys. J. 452, 1 (1995) ADSCrossRefGoogle Scholar
  84. Sarkar, D., Amblard, A., Holz, D.E., Cooray, A.: Lensing and supernovae: Quantifying the bias on the dark energy equation of state. Astrophys. J. 678, 1 (2008) ADSCrossRefGoogle Scholar
  85. Schneider, P., Ehlers, J., Falco, E.E.: Gravitational Lensing. Springer, Berlin (1992) CrossRefGoogle Scholar
  86. Spergel, D.N., Bean, R., Dore, O., et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: Implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007) ADSCrossRefGoogle Scholar
  87. Suntola, T.: The Dynamic Universe, Toward a Unified Picture of Physical Reality. Physics Foundations Society/CreateSpace, Seattle (2011) Google Scholar
  88. Sylos Labini, F., Montuori, M., Pietronero, L.: Scale-invariance of galaxy clustering. Phys. Rep. 293, 61 (1998) ADSCrossRefGoogle Scholar
  89. Sylos Labini, F., Vasilyev, N.L., Baryshev, Yu.V.: Breaking the self-averaging properties of spatial galaxy fluctuations in the Sloan digital sky survey data release six. Astron. Astrophys. 508, 17 (2009b) ADSCrossRefGoogle Scholar
  90. Taganov, I.N.: Conception of quantum cosmology. In: Baryshev, Yu., Taganov, I.N., Teerikorpi, P. (eds.) Practical Cosmology II, p. 68. Russian Geographical Society, St.Petersburg (2008) Google Scholar
  91. Tammann, G.A.: Precise determination of the distances of galaxies. In: Scientific Research with the Space Telescope. IAU Colloq., vol. 54, p. 263 (1979) Google Scholar
  92. Teerikorpi, P.: On the Hubble diagram for quasars as corrected for galactic absorption: Evidence for a separate class of the most luminous quasars. Astron. Astrophys. 98, 309 (1981b) ADSGoogle Scholar
  93. Teerikorpi, P.: Note on the use of Type I supernovae as cosmic clocks. Acta Cosmol. 10, 21 (1981c) ADSGoogle Scholar
  94. Teerikorpi, P.: Evidence for the class of the most luminous quasars II. Variability, polarization, and the gap in the M V distribution. Astron. Astrophys. 353, 77 (2000) ADSGoogle Scholar
  95. Teerikorpi, P.: Evidence for the class of the most luminous quasars IV. Cosmological Malmquist bias and the Λ term. Astron. Astrophys. 399, 829 (2003) ADSCrossRefGoogle Scholar
  96. Teerikorpi, P.: Influence of a generalized Eddington effect on galaxy counts. Astron. Astrophys. 424, 73 (2004) ADSCrossRefGoogle Scholar
  97. Tolman, R.C.: On the estimation of distances in a curved universe with a non-static line element. Proc. Natl. Acad. Sci. USA 16, 511 (1930) ADSCrossRefzbMATHGoogle Scholar
  98. Tyson, J.A.: Deep CD survey: Galaxy luminosity and color evolution. Astron. J. 96, 1 (1988) ADSCrossRefGoogle Scholar
  99. Wiik, K., Valtaoja, E.: The geometry of the universe from high resolution VLBI data of AGN shocks. Astron. Astrophys. 366, 1061 (2001) ADSCrossRefGoogle Scholar
  100. Wilson, O.C.: Possible applications of supernovae to the study of the nebular redshifts. Astrophys. J. 90, 634 (1939) ADSCrossRefGoogle Scholar
  101. Yoshii, Yu.: Detection and selection effects in observations of faint galaxies. Astrophys. J. 403, 552 (1993) ADSCrossRefGoogle Scholar
  102. Yoshii, Yu., Takara, F.: Galactic evolution and cosmology: probing the cosmological deceleration parameter. Astrophys. J. 326, 1 (1988) ADSCrossRefGoogle Scholar
  103. Zeldovich, Ya.B., Sunyaev, R.A.: The interaction of matter and radiation in a hot-model universe. Astrophys. Space Sci. 4, 301 (1969a) ADSCrossRefGoogle Scholar
  104. Zeldovich, Ya.B., Sunyaev, R.A.: The interaction of matter and radiation in a hot-model universe. Astrophys. Space Sci. 7, 20 (1969b) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of AstronomySt.Petersburg State UniversitySt.PetersburgRussia
  2. 2.Tuorla Observatory, Department of Physics and AstronomyUniversity of TurkuPiikkiöFinland

Personalised recommendations