Predictions of Gravity Theories

  • Yurij Baryshev
  • Pekka Teerikorpi
Part of the Astrophysics and Space Science Library book series (ASSL, volume 383)


Celestial bodies and the entire universe itself offer many ways to test theories of gravitation. General relativity, the well-known basis of current cosmology, can explain a wide spectrum of phenomena from the deflection of light by the Sun to the Hubble law of redshifts within the Friedmann model. At the same time it is a non-quantum theory and still requires testing in strong gravity. As we saw, a quite different approach, the relativistic field theory, is also interesting as it aims to describe the gravitational interaction in the same way as other fundamental forces are treated in physics.


Black Hole Field Gravity Gravity Theory Active Galactic Nucleus Weak Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abramowicz, M., Kluzniak, W., Lasota, J.-P.: No observational proof of the black hole event horizon. Astron. Astrophys. 396, L31 (2002) ADSzbMATHCrossRefGoogle Scholar
  2. Adelberger, E.G., Heckel, B.R., Nelson, A.E.: Tests of the gravitational inverse-square law. Annu. Rev. Nucl. Part. Sci. 53, 77 (2003) ADSCrossRefGoogle Scholar
  3. Aglietta, M., Badino, G., Bologna, G., et al.: On the event observed in the Mont Blanc Underground Neutrino Observatory during the occurrence of supernova 1987a. Europhys. Lett. 3, 1315 (1987) ADSCrossRefGoogle Scholar
  4. Amaldi, E., Bonifazi, P., Castellano, M., et al.: Data recorded by the Rome room temperature gravitational wave antenna, during the supernova SN 1987a in the Large Magellanic Cloud. Europhys. Lett. 3, 1325 (1987) ADSCrossRefGoogle Scholar
  5. Amelino-Camelia, G., Smolin, L.: Prospects for constraining quantum gravity dispersion with near term observations. Phys. Rev. D 80, 084017 (2009) ADSCrossRefGoogle Scholar
  6. Amelino-Camelia, G., Lammerzahl, C., Macias, A., Muller, H.: The search for quantum gravity signals. In: Gravitation and Cosmology: 2nd Mexican Meeting on Mathematical and Experimental Physics. AIP Conf. Proc., vol. 758, p. 30 (2005) Google Scholar
  7. Astone, P., Babusci, D., Bassan, M., et al.: Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in the year 2001. Class. Quantum Gravity 19, 5449 (2002) ADSzbMATHCrossRefGoogle Scholar
  8. Astone, P., Babusci, D., Ballantini, R., et al.: The 2003 run of the Explorer-Nautilus gravitational wave experiment. Class. Quantum Gravity 23, S169 (2006) ADSCrossRefGoogle Scholar
  9. Babadzhanyants, M.K., Belokon, E.T.: Optical manifestations of superluminal expansion of components belonging to the millisecond radio structure in the quasar 3C 345. Astrophysics 23, 639 (1985) ADSCrossRefGoogle Scholar
  10. Babadzhanyants, M.K., Belokon, E.T.: 3C 120: Connection between the optical variability and superluminal components of the millisecond radio structure. Astrophysics 27, 588 (1987) ADSGoogle Scholar
  11. Baryshev, Yu.V.: On the gravitational radiation of the binary system with the pulsar PSR1913+16. Astrophysics 18, 93 (1982) CrossRefGoogle Scholar
  12. Baryshev, Yu.V.: Conservation laws and equations of motion in the field gravitation theory. Vest. Leningr. Univ. Ser. 1 2, 80 (1988) Google Scholar
  13. Baryshev, Yu.V.: Pulsation of supermassive star in the tensor field gravitation theory. In: Variability of Blazars, p. 52. Cambridge Univ. Press, Cambridge (1992a) Google Scholar
  14. Baryshev, Yu.V.: On a possibility of scalar gravitational wave detection from the binary pulsar PSR1913+16. In: Coccia, E., Pizzella, G., Ronga, F. (eds.) Proc. of the First Amaldi Conference on Gravitational Wave Experiments, p. 251. World Sci. Publ. Co., Singapore (1995). gr-qc/9911081 Google Scholar
  15. Baryshev, Yu.V.: Signals from SN1987A in Amaldi-Weber antennas as possible detection of scalar gravitational waves. Astrophysics 40, 377 (1997) CrossRefGoogle Scholar
  16. Baryshev, Yu.V.: Translational motion of rotating bodies and tests of the equivalence principle. Gravit. Cosmol. 8, 232 (2002) MathSciNetADSzbMATHGoogle Scholar
  17. Baryshev, Yu.V., Paturel, G.: Statistics of the detection rates for tensor and scalar gravitational waves from the local galaxy universe. Astron. Astrophys. 371, 378 (2001) ADSzbMATHCrossRefGoogle Scholar
  18. Baryshev, Yu.V., Raikov, A.A.: A quantum limitation on the gravitational interaction. In: Saamokhin, A.P., Rcheulishvili, G.L. (eds.) Proc. of the XVII Int. Workshop Problems on High Energy Physics and Field Theory, Protvino (1995) Google Scholar
  19. Baryshev, Yu.V., Gubanov, A.G., Raikov, A.A.: On possibility of observational testing of the frequency dependence of gravitational bending of light. Gravitation 2, 72 (1996a) Google Scholar
  20. Baryshev, Yu.V., Raikov, A.A., Tron, A.A.: Microwave background radiation and cosmological large numbers. Astron. Astrophys. Trans. 10, 135 (1996b) ADSCrossRefGoogle Scholar
  21. Bekenstein, J.D.: The modified Newtonian dynamics—MOND—and its implications for new physics. Contemp. Phys. 47, 387 (2006). astro-ph/0701848 (2007) ADSCrossRefGoogle Scholar
  22. Belokon, E.T.: Optical variability of the quasar 3C273 and superluminal motion in its milliarcsecond radio jet. Sov. Astron. 35, 1 (1991) ADSGoogle Scholar
  23. Bertolami, O., de Matos, C.J., Grenouilleau, J.C., Minster, O., Volonté, S.: Perspectives in fundamental physics in space. Acta Astronaut. 59, 490 (2006b) ADSCrossRefGoogle Scholar
  24. Binney, J.: On the impossibility of advection dominated accretion (2003). astro-ph/0308171
  25. Bisnovatyi-Kogan, G.S., Lovelace, R.V.E.: Magnetic field limitations on advection-dominated flows. Astrophys. J. 529, 978 (2000) ADSCrossRefGoogle Scholar
  26. Chand, H., Srianand, R., Petitjean, P., Aracil, B.: Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample. Astron. Astrophys. 417, 853 (2004) ADSCrossRefGoogle Scholar
  27. Chapline, G.: Dark energy stars (2005). astro-ph/0503200
  28. Coccia, E., Dubath, F., Maggiore, M.: On the possible sources of gravitational wave bursts detectable today. Phys. Rev. D 70, 084010 (2004) ADSCrossRefGoogle Scholar
  29. Damour, T., Taylor, J.: On the orbital period change of the binary pulsar PSR 1913+16. Astrophys. J. 366, 501 (1991) ADSCrossRefGoogle Scholar
  30. Davis, T.M., Lineweaver, C.H.: Expanding confusion: Common misconceptions of cosmological horizons and the superluminal expansion of the universe. Publ. Astron. Soc. Aust. 21, 97 (2004) ADSCrossRefGoogle Scholar
  31. Deller, A.T., Bailes, M., Tingay, S.J.: Implications of a VLBI distance to the double pulsar J0737-3039A/B. Science 323, 132 (2009) CrossRefGoogle Scholar
  32. Dymnikova, I.: The cosmological term as a source of mass. Class. Quantum Gravity 19, 725 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. Einstein, A.: Die Feldgleichungen der Gravitation. Preuss. Akad. Wiss, Berlin (1915), Sitzber., 844 Google Scholar
  34. Einstein, A.: Die Grundlagen der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769 (1916) zbMATHCrossRefGoogle Scholar
  35. Falcke, H., Melia, F., Agol, E.: Viewing the shadow of the black hole in the galactic center. Astrophys. J. 528, L13 (2000) ADSCrossRefGoogle Scholar
  36. Fowler, W.: Massive stars, relativistic polytrops and gravitational radiation. Rev. Mod. Phys. 36, 545 (1964) ADSCrossRefGoogle Scholar
  37. Fowler, W.: The stability of supermassive stars. Astrophys. J. 144, 180 (1966) ADSCrossRefGoogle Scholar
  38. Haugan, M.P., Lämmerzahl, C.: Principles of equivalence: Their role in gravitation physics and experiments that test them. Lect. Notes Phys. 562, 195 (2001) ADSCrossRefGoogle Scholar
  39. Hoyle, F., Fowler, W.: On the nature of strong radio sources. Mon. Not. R. Astron. Soc. 125, 169 (1963) ADSGoogle Scholar
  40. Kapner, D.J., Cook, T.S., Adelberger, E.G., et al.: Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98(2), 021101 (2007) ADSCrossRefGoogle Scholar
  41. Komberg, B.: A binary system as a quasar model. Sov. Astron. 11, 727 (1968) ADSGoogle Scholar
  42. Marscher, A., Jorstad, S.G., Larionov, V.M., Aller, M.F., Lähteenmäki, A.: Multi-frequency observations of gamma-ray blazar 1633+382. J. Astrophys. Astron. 41J (2011) Google Scholar
  43. Mazur, P., Mottola, E.: Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. USA 111, 9545 (2004) ADSCrossRefGoogle Scholar
  44. Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365 (1983) ADSCrossRefGoogle Scholar
  45. Mitra, A.: Non-occurence of trapped surfaces and black holes in spherical gravitational collapse. Found. Phys. Lett. 13, 543 (2000) CrossRefGoogle Scholar
  46. Mitra, A.: Radiation pressure supported stars in Einstein gravity: Eternally collapsing objects. Mon. Not. R. Astron. Soc. 369, 492 (2006) ADSCrossRefGoogle Scholar
  47. Moshinsky, M.: On the interacting Birkhoff’s gravitational field with the electromagnetic and pair fields. Phys. Rev. 80, 514 (1950) MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. Narayan, R., Quataert, E.: Black hole accretion. Science 307, 77 (2005) ADSCrossRefGoogle Scholar
  49. Narayan, R., Garcia, M.R., McClintock, J.E.: Advection-dominated accretion and black hole event horizons. Astrophys. J. 478, L79 (1997) ADSCrossRefGoogle Scholar
  50. Nesvizhevsky, V.V., Protasov, K.V.: Constrains on non-Newtonian gravity from the experiment on neutron quantum states in the Earth’s gravitational field. Class. Quantum Gravity 21, 4557 (2004) ADSzbMATHCrossRefGoogle Scholar
  51. Nesvizhevsky, V.V., Borner, H.G., Petukhov, A.K., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297 (2002) ADSCrossRefGoogle Scholar
  52. Okun, L.B., Selivanov, K.G., Telegdi, V.L.: On the interpretation of the redshift in a static gravitational field. Am. J. Phys. 68, 15 (2000) CrossRefGoogle Scholar
  53. Oschepkov, S.A., Raikov, A.A.: Post-Newtonian polytropes in alternative gravity theories. Gravitation 1, 44 (1995) Google Scholar
  54. Paczynski, B.: Gamma-ray burst—supernova relation. In: Livio, M., Panagia, N., Sahu, K. (eds.) Proc. of the STSI 1999 May Symposium (13): “Supernovae and Gamma Ray Bursts; The Largest Explosions Since the Big Bang”, p. 1. Cambridge University Press, Cambridge (2001) Google Scholar
  55. Paturel, G., Baryshev, Yu.V.: Prediction of the sidereal time distribution of gravitational wave events for different detectors. Astrophys. J. 592, L99 (2003a) ADSCrossRefGoogle Scholar
  56. Paturel, G., Baryshev, Yu.V.: Sidereal time analysis as a tool for the study of the space distribution of sources of gravitational waves. Astron. Astrophys. 398, 377 (2003b) ADSCrossRefGoogle Scholar
  57. Pynzar, A.V.: Correlation between the scattering parameters for pulsars and the emission measure of the galactic background. Astron. Rep. 39, 406 (1995) ADSGoogle Scholar
  58. Ragazzoni, R., Turatto, M., Gaessler, W.: Lack of observational evidence for quantum structure of space-time at Planck scales. Astrophys. J. 587, L1 (2003) ADSCrossRefGoogle Scholar
  59. Robertson, S.L., Leiter, D.J.: Evidence for intrinsic magnetic moments in black hole candidates. Astrophys. J. 565, 447 (2002) ADSCrossRefGoogle Scholar
  60. Robertson, S.L., Leiter, D.J.: On intrinsic magnetic moments in black hole candidates. Astrophys. J. Lett. 596, L203 (2003) ADSCrossRefGoogle Scholar
  61. Robertson, S.L., Leiter, D.J.: On the origin of the universal radio-X-ray luminocity correlation in black hole candidates. Astrophys. J. Lett. 596, L203 (2004) ADSCrossRefGoogle Scholar
  62. Robertson, S.L., Leiter, D.J.: The magnetospheric eternally collapsing object (MECO) model of galactic black hole candidates and active galactic nuclei. In: Kreitler, P.V. (ed.) New Developments in Black Hole Reseach. Nova Science, New York (2005). astro-ph/0602453 Google Scholar
  63. Schild, R.E., Leiter, D.J., Robertson, S.L.: Observations supporting the existence of an intrinsic magnetic moment inside the central compact object within the quasar Q0957+561. Astron. J. 132, 420 (2006) ADSCrossRefGoogle Scholar
  64. Sillanpää, A., Takalo, L.O., Pursimo, T., et al.: Confirmation of the 12-year optical outburst cycle in blazar OJ 287. Astron. Astrophys. 305, L17 (1996) ADSGoogle Scholar
  65. Sokolov, V.V.: The properties of the strong static field of a collapsar in gravidynamics. Astrophys. Space Sci. 197, 179 (1992c) ADSCrossRefGoogle Scholar
  66. Sokolov, V.V.: Identifications of the Gamma-bursts: Optical transients and host galaxies. Dissertation on doctor of physical-mathematical sciences degree, SAO RAS (2002) (in Russian) Google Scholar
  67. Sokolov, V.V., Bisnovatyi-Kogan, G.S., Kurt, V.G., Gnedin, Yu.N., Baryshev, Yu.V.: Observational constraints on the angular and spectral distributions of photons in gamma-ray burst sources. Astron. Rep. 50, 612 (2006) ADSCrossRefGoogle Scholar
  68. Tanyukhin, I.M.: Energy of gravitational field and models of neutron stars. Diplom work, St.-Petersburg University (1995) (in Russian) Google Scholar
  69. Unzicker, A.: Why do we still believe in Newton’s Law? Facts, myths and methods in gravitational physics (2007). gr-qc/0702009
  70. Valtonen, M.J., Lehto, H.J.: Outbursts in OJ287: A new test for the general theory of relativity. Astrophys. J. 481, L5 (1997) ADSCrossRefGoogle Scholar
  71. Valtonen, M.J., Lehto, H.J., Nilsson, K., et al.: A massive binary black-hole system in OJ287 and a test of general relativity. Nature 452, 851 (2008a) ADSCrossRefGoogle Scholar
  72. Wagner, R.: Exploring quantum gravity with very-high-energy gamma-ray instruments—Prospects and limitations. AIP Conf. Proc. 1112, 187 (2009) ADSCrossRefGoogle Scholar
  73. Weisberg, J.M., Taylor, J.H.: General relativistic geodetic spin precession in binary pulsar B1913+16: Mapping the emission beam in two dimensions. Astrophys. J. 576, 942 (2002) ADSCrossRefGoogle Scholar
  74. Weisberg, J.M., Nice, D.J., Taylor, J.H.: Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030 (2010) ADSCrossRefGoogle Scholar
  75. Westphal, A., Abele, H., Baebler, S., et al.: A quantum mechanical description of the experiment on the observation of gravitationally bound states. Eur. Phys. J. C 51, 367 (2007) ADSCrossRefGoogle Scholar
  76. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993) zbMATHCrossRefGoogle Scholar
  77. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 (2005) ADSGoogle Scholar
  78. Wilms, J., Reynolds, C., Begelman, M., et al.: XMM-EPIC observation of MCG-6-30-15: Direct evidence for the extraction of energy from a spinning black hole? Mon. Not. R. Astron. Soc. 328, L27 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of AstronomySt.Petersburg State UniversitySt.PetersburgRussia
  2. 2.Tuorla Observatory, Department of Physics and AstronomyUniversity of TurkuPiikkiöFinland

Personalised recommendations