Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 383))

  • 1198 Accesses

Abstract

World models have been always related to views on the reason why an apple falls. At the heart of a cosmological model there must be a theory of that universal force that acts between all masses and rules the dynamics of the whole universe. In current cosmology, it is general relativity. This is not a quantum theory and developments in theoretical physics suggest that also other possibilities exist to construct a gravity theory to be used in world models—a good reason to pay attention to trends in gravity physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A quantum description of the field was attempted by Bronstein (1936), Fierz and Pauli (1939), Ivanenko and Sokolov (1947), Feynman (1963, 1971), Weinberg (1965), Zakharov (1965), and Ogievetsky and Polubarinov (1965). Others tried to combine geometry and field; this has led to three different theories with different predictions (Sect. 5.2.3).

  2. 2.

    We use main definitions and notations similar to Landau and Lifshitz (1971), so 4D tensor indices are denoted by Latin letters i,k,l,… which take on the values 0, 1, 2, 3, and the metric has signature (+,−,−,−).

  3. 3.

    The problem of the meaning of coordinate systems in general relativity has been debated for a long time and there is no commonly accepted solution (see, for instance, Misner et al. 1973, p. 1097; Mitra 2002, 2006).

  4. 4.

    It has been argued that this way of importing the energy into the gravity field is physically inconsistent (Logunov and Folomeshkin 1977; Logunov and Mestvirishvili 1989). Moreover Yilmaz (1992) has shown that due to the Freud identity for any pseudo-tensor \(\partial_{i} (\sqrt{-g} t^{i}_{k})=0\), creating a difficulty with the definition of the gravitational acceleration.

  5. 5.

    These include: Sokolov and Baryshev (1980), Baryshev and Sokolov (1983, 1984), Sokolov (1992a, 1992b, 1992c, 1992d), Baryshev (1982, 1995, 1996, 2003), Baryshev and Kovalevski (1990), Baryshev and Raikov (1995), Baryshev and Paturel (2001), Paturel and Baryshev (2003a, 2003b), and other refs. in this book.

  6. 6.

    This point is also different from all “effective geometry” theories where the universality of gravity is understood as geodesic motion in Riemannian space.

References

  • Amelino-Camelia, G.: Quantum theory’s last challenge. Nature 408, 661 (2000)

    Article  ADS  Google Scholar 

  • Anderson, J.D.: Is there something we do not know about gravity? Astronomy 37, 22 (2009)

    Google Scholar 

  • Babak, S.V., Grishchuk, L.P.: Finite-range gravity and its role in gravitational waves, black holes and cosmology. Phys. Rev. B 66, 184507 (2002)

    Article  Google Scholar 

  • Barnes, K.J.: Lagrangian theory for the second-rank-tensor field. J. Math. Phys. 6, 788 (1965)

    Article  ADS  MATH  Google Scholar 

  • Baryshev, Yu.V.: On the gravitational radiation of the binary system with the pulsar PSR1913+16. Astrophysics 18, 93 (1982)

    Article  Google Scholar 

  • Baryshev, Yu.V.: Equations of motion of test particles in Lorentz-covariant tensor theory of gravity. Vest. Leningr. Univ. Ser. 1 4, 113 (1986)

    MathSciNet  Google Scholar 

  • Baryshev, Yu.V.: Conservation laws and equations of motion in the field gravitation theory. Vest. Leningr. Univ. Ser. 1 2, 80 (1988)

    Google Scholar 

  • Baryshev, Yu.V.: On a possibility of scalar gravitational wave detection from the binary pulsar PSR1913+16. In: Coccia, E., Pizzella, G., Ronga, F. (eds.) Proc. of the First Amaldi Conference on Gravitational Wave Experiments, p. 251. World Sci. Publ. Co., Singapore (1995). gr-qc/9911081

    Google Scholar 

  • Baryshev, Yu.V.: Field theory of gravitation: Desire and reality. Gravitation 2, 69 (1996)

    Google Scholar 

  • Baryshev, Yu.V.: Spatial distribution of galaxies and tests of the relativistic cosmology. Dissertation on doctor of physical-mathematical sciences degree, St.-Petersburg University, St.-Petersburg (2003) (in Russian)

    Google Scholar 

  • Baryshev, Yu.V., Kovalevski, M.A.: Homogeneous ball in the field gravitation theory. Vest. Leningr. Univ. Ser. 1 1, 86 (1990)

    Google Scholar 

  • Baryshev, Yu.V., Paturel, G.: Statistics of the detection rates for tensor and scalar gravitational waves from the local galaxy universe. Astron. Astrophys. 371, 378 (2001)

    Article  ADS  MATH  Google Scholar 

  • Baryshev, Yu.V., Raikov, A.A.: A quantum limitation on the gravitational interaction. In: Saamokhin, A.P., Rcheulishvili, G.L. (eds.) Proc. of the XVII Int. Workshop Problems on High Energy Physics and Field Theory, Protvino (1995)

    Google Scholar 

  • Baryshev, Yu.V., Sokolov, V.V.: Relativistic tensor theory of gravitational field in flat space-time. Trans. Astron. Obs. Leningr. Univ. 38, 36 (1983)

    ADS  Google Scholar 

  • Baryshev, Yu.V., Sokolov, V.V.: Some astrophysical consequences of the dynamical treatment of gravity. Astrophysics 21, 361 (1984)

    Article  Google Scholar 

  • Bauer, H.: On the energy components of the gravitational field. Phyz. Z. 19, 163 (1918)

    Google Scholar 

  • Bertolami, O., Paramos, J., Turyshev, S.: General theory of relativity: Will it survive the next decade. In: Dittus, H., Laemmerzahl, C., Turyshev, S. (eds.) Lasers, Clocks, and Drag-Free: Technologies for Future Exploration in Space and Tests of Gravity, p. 27. Springer, Berlin (2006a)

    Google Scholar 

  • Birkhoff, G.D.: Flat space-time and gravitation. Proc. Natl. Acad. Sci. USA 30, 324 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bogolubov, N., Shirkov, D.: Introduction to Quantum Field Theory. Nauka, Moscow (1976)

    Google Scholar 

  • Bronstein, M.D.: On the possible theory of the world as a whole. In: Main Problems of Cosmic Physics, p. 186. ONTI, Kiev (1934)

    Google Scholar 

  • Bronstein, M.D.: Quantization of gravitational waves. J. Exp. Theor. Phys. 6, 195 (1936)

    Google Scholar 

  • Brumberg, V.A.: Essential Relativistic Celestial Mechanics. Adam Hildger IOP Publ. Ltd, New York (1991)

    MATH  Google Scholar 

  • Carroll, S.M., De Felice, A., Duvvuri, V., et al.: The cosmology of generalized modified gravity models. Phys. Rev. D 71(2005), 063513 (2005)

    Article  ADS  Google Scholar 

  • Chiao, R.: Conceptual tensions between quantum mechanics and general relativity: are there experimental consequences? (2003). gr-qc/0303100

  • Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology (2011). arXiv:1106.2476 [astro-ph]

  • Einstein, A.: Die Feldgleichungen der Gravitation. Preuss. Akad. Wiss, Berlin (1915), Sitzber., 844

    Google Scholar 

  • Einstein, A.: Die Grundlagen der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769 (1916)

    Article  Google Scholar 

  • Einstein, A.: Notiz zu E. Schrödingers Arbeit “Die Energiekomponenten des Gravitationsfeldes”. Phys. Z. 19, 115 (1918)

    Google Scholar 

  • Einstein, A., Grossmann, M.: Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Z. Math. Phys. 62, 225 (1913)

    Google Scholar 

  • Feynman, R.: Quantum theory of gravitation. Acta Phys. Pol. XXIV, 697 (1963)

    MathSciNet  Google Scholar 

  • Feynman, R.: Lectures on Gravitation. California Institute of Technology, Pasadena (1971)

    Google Scholar 

  • Feynman, R., Morinigo, F., Wagner, W.: Feynman Lectures on Gravitation. Addison-Wesley, Reading (1995)

    Google Scholar 

  • Fierz, M., Pauli, W.: On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A 173, 211 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  • Gamow, G., Ivanenko, D.D., Landau, L.D.: World constants and limiting transitions. J. Russ. Phys.-Chem. Soc. 60, 13 (1928)

    Google Scholar 

  • Grischuk, L.P., Petrov, A.N., Popova, A.D.: Exact theory of the (Einstein) gravitational field in an arbitrary background space-time. Commun. Math. Phys. 94, 379 (1984)

    Article  ADS  Google Scholar 

  • Hilbert, D.: Die Grundlagen der Physik. Göttingen Nachr. 4, 21 (1917)

    Google Scholar 

  • Ivanenko, D.D., Sokolov, A.: Quantum gravitation theory. Trans. Mosc. Univ. 8, 103 (1947)

    MathSciNet  Google Scholar 

  • Kalman, G.: Lagrangian formalism in relativistic dynamics. Phys. Rev. 123, 384 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon, Oxford (1971)

    Google Scholar 

  • Logunov, A.A., Folomeshkin, V.N.: Problem of energy-momentum and gravity theory. Theor. Math. Phys. 32, 291 (1977)

    MATH  Google Scholar 

  • Logunov, A.A., Mestvirishvili, M.A.: The Relativistic Theory of Gravitation. Mir, Moscow (1989)

    MATH  Google Scholar 

  • Misner, C., Thorne, K., Wheeler, J.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  • Mitra, A.: On the final state of spherical gravitational collapse. Found. Phys. Lett. 15, 439 (2002)

    Article  MathSciNet  Google Scholar 

  • Mitra, A.: Radiation pressure supported stars in Einstein gravity: Eternally collapsing objects. Mon. Not. R. Astron. Soc. 369, 492 (2006)

    Article  ADS  Google Scholar 

  • Moshinsky, M.: On the interacting Birkhoff’s gravitational field with the electromagnetic and pair fields. Phys. Rev. 80, 514 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Multamäki, T., Vilja, I.: Constraining Newtonian stellar configurations in f(R) theories of gravity. Phys. Lett. B 659, 843 (2008)

    Article  ADS  Google Scholar 

  • Multamäki, T., Putaja, A., Vagenas, E., Vilja, I.: Energy-momentum complexes in f(R) theories of gravity. Class. Quantum Gravity 25, 075017 (2008)

    Article  ADS  Google Scholar 

  • Noether, E.: Invariante Variationsprobleme. In: Nachr. v.d. Ges. d. Wiss. zu Göttingen, p. 235 (1918)

    Google Scholar 

  • Ogievetsky, V.I., Polubarinov, I.V.: Interacting field of spin 2 and the Einstein equations. Ann. Phys. 35, 167 (1965)

    Article  ADS  Google Scholar 

  • Padmanabhan, T.: From gravitons to gravity: myth and reality. Int. J. Mod. Phys. D 17, 367 (2008). gr-qc/0409089

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Paturel, G., Baryshev, Yu.V.: Prediction of the sidereal time distribution of gravitational wave events for different detectors. Astrophys. J. 592, L99 (2003a)

    Article  ADS  Google Scholar 

  • Paturel, G., Baryshev, Yu.V.: Sidereal time analysis as a tool for the study of the space distribution of sources of gravitational waves. Astron. Astrophys. 398, 377 (2003b)

    Article  ADS  Google Scholar 

  • Poincaré, H.: Sur la dynamique de l’électron. C. R. Acad. Sci. 140, 1504 (1905)

    MATH  Google Scholar 

  • Poincaré, H.: Sur la dynamique de l’électron. Rend. Circ. Mat. Palermo 21, 129 (1906)

    Article  MATH  Google Scholar 

  • Schrödinger, E.: The energy components of the gravitational field. Phys. Z. 19, 4 (1918)

    Google Scholar 

  • Sokolov, V.V.: Linear and nonlinear gravidynamics: static field of a collapsar. Astrophys. Space Sci. 191, 231 (1992a)

    Article  ADS  Google Scholar 

  • Sokolov, V.V.: Nonlinear gravidynamics: energy-momentum tensor of collapsar field. Astrophys. Space Sci. 197, 87 (1992b)

    Article  MathSciNet  ADS  Google Scholar 

  • Sokolov, V.V.: The properties of the strong static field of a collapsar in gravidynamics. Astrophys. Space Sci. 197, 179 (1992c)

    Article  ADS  Google Scholar 

  • Sokolov, V.V.: Scalar gravitational waves and observational limitations for the energy-momentum tensor of a gravitational field. Astrophys. Space Sci. 198, 53 (1992d)

    Article  ADS  Google Scholar 

  • Sokolov, V.V., Baryshev, Yu.V.: Field theory approach to gravity. Energy momentum tensor of the field. Gravit. Relativ. Theory 17, 34 (1980)

    MathSciNet  Google Scholar 

  • Straumann, N.: Reflections on gravity (2000). astro-ph/0006423

  • Thirring, W.E.: An alternative approach to the theory of gravitation. Ann. Phys. 16, 96 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Weinberg, S.: Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations. Phys. Rev. B 138, 988 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  • Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 (2005)

    ADS  Google Scholar 

  • Xulu, S.S.: The energy-momentum problem in general relativity. PhD Thesis (2003). arXiv:hep-th/0308070

  • Yilmaz, H.: Toward a field theory of gravitation. Nuovo Cimento B 107, 941 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  • Yilmaz, H.: Toward a comprehensible physical theory: gravity and quantum mechanics, a modern synthesis. In: Jeffers, S., et al. (eds.) The Present Status of the Quantum Theory of Light, p. 503. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  • Zakharov, V.I.: Spin of virtual gravitons. Zh. Eksp. Teor. Fiz. 48, 303 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurij Baryshev .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baryshev, Y., Teerikorpi, P. (2012). Gravitational Physics for Cosmic Scales. In: Fundamental Questions of Practical Cosmology. Astrophysics and Space Science Library, vol 383. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2379-5_5

Download citation

Publish with us

Policies and ethics