Cosmological Redshift and the Distance Scale

Part of the Astrophysics and Space Science Library book series (ASSL, volume 383)

Abstract

Amidst the Great War raging in Europe, three remarkable articles appeared. Einstein (1917) presented the static, homogeneous, and finite cosmological model as a solution of his brand-new equations of general relativity. This required the introduction of the cosmological constant. de Sitter (1917) derived another solution: he made the matter density approach zero, and included the cosmological constant. This static world model predicted the “de Sitter effect” where light from remote objects is redshifted and the redshift has a non-linear dependence on the distance. In a novel manner, light became a tool to measure properties of the universe at large.

Keywords

Dark Matter Active Galactic Nucleus Distance Scale Hubble Constant Broad Line Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Behr, A.: Zur Entfernungsskala der extragalaktischen Nebel. Astron. Nachr. 279, 97 (1951) ADSCrossRefGoogle Scholar
  2. Bolzonella, M., Miralles, J.-M., Pelló, R.: Photometric redshifts based on standard SED fitting procedures. Astron. Astrophys. 363, 476 (2000) ADSGoogle Scholar
  3. Bonamente, M., Joy, M.K., LaRoque, S.J., Carlstrom, J.E., Reese, E.D., Dawson, K.S.: Determination of the cosmic distance scale from Sunyaev-Zeldovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys. J. 647, 25 (2006) ADSCrossRefGoogle Scholar
  4. Bottinelli, L., Gouguenheim, L., Paturel, G., Teerikorpi, P.: The Malmquist bias and the value of H 0 from the Tully-Fisher relation. Astron. Astrophys. 156, 157 (1986) ADSGoogle Scholar
  5. Bottinelli, L., Fouqué, P., Gouguenheim, L., Paturel, G., Teerikorpi, P.: Cluster population incompleteness bias and the value of H 0 from the Tully-Fisher relation. Astron. Astrophys. 181, 1 (1987) ADSGoogle Scholar
  6. Bottinelli, L., Gouguenheim, L., Paturel, G., Teerikorpi, P.: The Malmquist bias in the extragalactic distance scale: Controversies and misconceptions. Astrophys. J. 328, 4 (1988) ADSCrossRefGoogle Scholar
  7. Bottinelli, L., Gouguenheim, L., Paturel, G., Teerikorpi, P.: Extragalactic database: VI Inclination corrections for spiral galaxies and disk opaqueness in the B-band. Astron. Astrophys. 296, 64 (1995) ADSGoogle Scholar
  8. Carlstrom, J.E., Holder, G.P., Reese, E.D.: Cosmology with the Sunyaev-Zel’dovich effect. Annu. Rev. Astron. Astrophys. 40, 643 (2002) ADSCrossRefGoogle Scholar
  9. de Sitter, W.: On Einstein’s theory of gravitation, and its astronomical consequences. III. Mon. Not. R. Astron. Soc. LXXVIII(1), 3 (1917) Google Scholar
  10. de Vaucouleurs, G.: The velocity-distance relation and the Hubble constant for nearby groups of galaxies. In: Evans, D.S. (ed.) External Galaxies and Quasi-Stellar Objects. IAU Symp., vol. 44, p. 353. Reidel, Dordrecht (1972) Google Scholar
  11. de Vaucouleurs, G.: The distance scale of the universe. In: Sky & Telescope, December 1983, p. 511 (1983b) Google Scholar
  12. Djorgovski, S., Spinrad, H.: Towards the application of a metric size function in galactic evolution and cosmology. Astrophys. J. 251, 417 (1981) ADSCrossRefGoogle Scholar
  13. Einstein, A.: Kosmologiche Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsber. Berl. Akad. 1, 142 (1917) Google Scholar
  14. Ekholm, T., Lanoix, P., Paturel, G., Teerikorpi, P., Fouqué, P.: Investigations of the local superclaster velocity field: II. A study using Tolman-Bondi solution and galaxies with accurate distances from the Cepheid PL-relation. Astron. Astrophys. 351, 827 (1999b) ADSGoogle Scholar
  15. Ekholm, T., Baryshev, Yu., Teerikorpi, P., Hanski, M., Paturel, G.: On the quiescence of the Hubble flow in the vicinity of the local group: A study using galaxies with distances from the Cepheid PL-relation. Astron. Astrophys. 368, L17 (2001) ADSCrossRefGoogle Scholar
  16. Fouqué, P., Bottinelli, L., Gouguenheim, L., Paturel, G.: The extragalactic distance scale. II. The unbiased distance to the Virgo cluster from the B-band Tully-Fisher relation. Astrophys. J. 349, 1 (1990) ADSCrossRefGoogle Scholar
  17. Freedman, W.L., Madore, B.F.: The Hubble constant. Annu. Rev. Astron. Astrophys. 48, 673 (2010) ADSCrossRefGoogle Scholar
  18. Freedman, W.L., Madore, B.F., Gibson, B.K., et al.: Final results from the Hubble Space Telescope Key Project to measure the Hubble constant. Astrophys. J. 553, 47 (2001) ADSCrossRefGoogle Scholar
  19. Giovanelli, R., Haynes, M.P., Herter, T., et al.: The I band Tully-Fisher relation for cluster galaxies: A template relation, its scatter and bias corrections. Astron. J. 113, 53 (1997) ADSCrossRefGoogle Scholar
  20. Harrison, E.R., Noonan, T.W.: Interpretation of extragalactic redshifts. Astrophys. J. 232, 18 (1979) ADSCrossRefGoogle Scholar
  21. Hawkins, G.S.: Expansion of the universe. Nature 194, 563 (1962) ADSCrossRefGoogle Scholar
  22. Hu, W., Dodelson, S.: Cosmic microwave background anisotropies. Annu. Rev. Astron. Astrophys. 40, 171 (2002) ADSCrossRefGoogle Scholar
  23. Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. USA 15, 168 (1929) ADSMATHCrossRefGoogle Scholar
  24. Hubble, E.: The luminosity function of nebulae. I. The luminosity function of resolved nebulae as indicated by their brightest stars. Astrophys. J. 84, 158 (1936b) ADSCrossRefGoogle Scholar
  25. Humason, M.L., Mayall, N.U., Sandage, A.: Redshifts and magnitudes of extragalactic nebulae. Astron. J. 61, 97 (1956) ADSCrossRefGoogle Scholar
  26. Jackson, N.: The Hubble constant. Living Rev. Relativ. 10, 4 (2007). www.livingreviews.org/lrr-2007-4 ADSGoogle Scholar
  27. Kaspi, S., Smith, P.S., Netzer, H., Maoz, D., Jannuzi, B.T., Giveon, U.: Reverberation measurements for 17 quasars and the size-mass-luminosity relations in active galactic nuclei. Astrophys. J. 533, 631 (2000) ADSCrossRefGoogle Scholar
  28. Kawahara, H., Kitayama, T., Sasaki, S., Suto, Y.: Systematic error in the Hubble constant measurement from the Sunyaev-Zeldovich effect. Astrophys. J. 674, 11 (2008) ADSCrossRefGoogle Scholar
  29. Koranyi, D.M., Strauss, M.A.: Testing the Hubble law with the IRAS 1.2 Jy redshift survey. Astrophys. J. 477, 36 (1997) ADSCrossRefGoogle Scholar
  30. Koratkar, A.P., Gaskell, C.M.: Radius-luminosity and mass-luminosity relationships for active galactic nuclei. Astrophys. J. 370, L61 (1991) ADSCrossRefGoogle Scholar
  31. Kron, R.G.: Evolution in the galaxy population. In: Binggeli, B., Buser, R. (eds.) The Deep Universe, pp. 233–316. Springer, Berlin (1995) Google Scholar
  32. Lemaître, G.: Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. 47, 49 (1927) Google Scholar
  33. Lemaître, G.: A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon. Not. R. Astron. Soc. 91, 483 (1931) (translation from the original 1927 paper) ADSGoogle Scholar
  34. Lundmark, K.: The motions and the distances of spiral nebulae. Mon. Not. R. Astron. Soc. 85, 865 (1925) ADSGoogle Scholar
  35. Lynden-Bell, D., Faber, S.M., Burstein, D., et al.: Spectroscopy and photometry of elliptical galaxies. V—Galaxy streaming toward the new supergalactic center. Astrophys. J. 326, 19 (1988) ADSCrossRefGoogle Scholar
  36. Nicoll, J.F., Segal, I.E.: Correction of a criticism of the phenomenological quadratic redshift-distance law. Astrophys. J. 258, 457 (1982) ADSCrossRefGoogle Scholar
  37. Öpik, E.: An estimate of the distance of the Andromeda Nebula. Astrophys. J. 55, 406 (1922) ADSCrossRefGoogle Scholar
  38. Paturel, G., Teerikorpi, P.: The extragalactic Cepheid bias: Significant influence on the cosmic distance scale. Astron. Astrophys. 443, 883 (2005) ADSCrossRefGoogle Scholar
  39. Peebles, P.J.E.: Significance of the first brightest galaxies in rich clusters. Astrophys. J. 153, 13 (1968) ADSCrossRefGoogle Scholar
  40. Petrosian, V.: Surface brightness and evolution of galaxies. Astrophys. J. 210, L53 (1976) ADSCrossRefGoogle Scholar
  41. Poggianti, B.: K and evolutionary corrections from UV to IR. Astron. Astrophys. Suppl. Ser. 122, 399 (1997) ADSCrossRefGoogle Scholar
  42. Refsdal, S.: On the possibility of determining Hubble’s parameter and the masses of galaxies from the gravitational lens effect. Mon. Not. R. Astron. Soc. 307 (1964) Google Scholar
  43. Roberts, M.S.: The gaseous content of galaxies (survey lecture). In: Evans, D.S. (ed.) External Galaxies and Quasi-Stellar Objects. IAU Symp., vol. 44, p. 12. Reidel, Dordrecht (1972) Google Scholar
  44. Sandage, A.: Current problems in the extragalactic distance scale. Astrophys. J. 127, 513 (1958) ADSCrossRefGoogle Scholar
  45. Sandage, A.: The redshift–distance relation. I. Angular diameter of first-ranked cluster galaxies as a function of redshift: The aperture correction to magnitudes. Astrophys. J. 173, 485 (1972) ADSCrossRefGoogle Scholar
  46. Sandage, A.: The case for H 0≈55 from the 21 centimeter linewidth absolute magnitude relation for field galaxies. Astrophys. J. 331, 606 (1988c) ADSGoogle Scholar
  47. Sandage, A.: Bias properties of extragalactic distance indicators. I. The Hubble constant does not increase outward. Astrophys. J. 430, 1 (1994) ADSCrossRefGoogle Scholar
  48. Sandage, A.: Practical cosmology: Inventing the past. In: Binggeli, Buser, R. (eds.) The Deep Universe, pp. 1–232. Springer, Berlin (1995b) Google Scholar
  49. Sandage, A.: Bias properties of extragalactic distance indicators. VIII, H 0 from distance-limited luminosity class and morphological type-specific luminosity functions for Sb, Sbc, and Sc galaxies calibrated using Cepheids. Astrophys. J. 527, 479 (1999) ADSCrossRefGoogle Scholar
  50. Sandage, A., Tammann, G.A.: Steps toward the Hubble constant. V. The Hubble constant from nearby galaxies and the regularity of the local velocity field. Astrophys. J. 196, 313 (1975) ADSCrossRefGoogle Scholar
  51. Sandage, A., Tammann, G.A., Saha, A., Reindl, B., Macchetto, F.D., Panagia, N.: The Hubble constant: A summary of the HST program for the luminosity calibration of Type Ia supernovae by means of Cepheids. Astrophys. J. 253, 843 (2006) ADSCrossRefGoogle Scholar
  52. Segal, I.E.: Covariant chronogeometry and extreme distances. Astron. Astrophys. 18, 143 (1972) ADSGoogle Scholar
  53. Segal, I.E.: Mathematical Cosmology and Extragalactic Astronomy. Academic Press, New York (1976) Google Scholar
  54. Segal, I.E., Nicoll, J.F.: Tests of local redshift–distance laws on the basis of a complete optical sample. Astrophys. J. 465, 578 (1996) ADSCrossRefGoogle Scholar
  55. Shapley, H., Shapley, M.B.: Studies based on the colors and magnitudes in stellar clusters. Fourteenth paper: Further remarks on the structure of the galactic system. Astrophys. J. 50, 107 (1919) ADSCrossRefGoogle Scholar
  56. Silk, J., White, S.D.M.: The determination of q 0 using X-ray and microwave observations of galaxy clusters. Astrophys. J. 226, L103 (1978) ADSCrossRefGoogle Scholar
  57. Slipher, V.M.: Nebulae. Proc. Am. Philos. Soc. 56, 403 (1917) ADSGoogle Scholar
  58. Soneira, R.M.: A cosmological redshift-distance square law? Astrophys. J. 230, L63 (1979) ADSCrossRefGoogle Scholar
  59. Spaenhauer, A.M.: A systematic comparison of four methods to derive stellar space densities. Astron. Astrophys. 65, 313 (1978) ADSGoogle Scholar
  60. Spergel, D.N., Verde, L., Peiris, H.V., et al.: First year Wilkinson microwave anisotropy probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003) ADSCrossRefGoogle Scholar
  61. Sunyaev, R.A., Zeldovich, Ya.B.: The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies. Comm. Astrophys. Space Phys. 4, 173 (1972) ADSGoogle Scholar
  62. Tammann, G.A.: The ups and downs of the Hubble constant. In: Röser, S. (ed.) Reviews of Modern Astronomy, vol. 19 (2006); Karl Schwarzschild Lecture (in collaboration with B. Reindl) Google Scholar
  63. Tammann, G.A., Sandage, A., Yahil, A.: The determination of cosmological parameters. In: Balian, R., Adouze, J., Schramm, D.N. (eds.) Physical Cosmology, p. 53. North-Holland, Amsterdam (1980) Google Scholar
  64. Tammann, G.A., Sandage, A., Reindl, B.: New period-luminosity and period-color relations for classical Cepheids: I. Cepheids in the galaxy. Astron. Astrophys. 404, 423 (2003) ADSCrossRefGoogle Scholar
  65. Teerikorpi, P.: A note on the velocity–distance relationship for nearby galaxies and galaxy groups. Observatory 95, 105 (1975a) ADSGoogle Scholar
  66. Teerikorpi, P.: On the effect of the luminosity selection on the redshift–distance relationship. Astron. Astrophys. 45, 117 (1975b) ADSGoogle Scholar
  67. Teerikorpi, P.: Local Hubble constant from nearby Sc galaxies. Astron. Astrophys. 50, 455 (1976) ADSGoogle Scholar
  68. Teerikorpi, P.: Studies on the Hubble law with emphasis on selection effects and galactic absorption. Report Series No. D4, Dep. Phys. Sci. Univ. Turku (1981d) Google Scholar
  69. Teerikorpi, P.: Malmquist bias in a relation of the form M=ap+b. Astron. Astrophys. 141, 407 (1984) ADSGoogle Scholar
  70. Teerikorpi, P.: Cluster population incompleteness bias and distances from the Tully-Fisher relation: Theory and numerical examples. Astron. Astrophys. 173, 39 (1987) ADSGoogle Scholar
  71. Teerikorpi, P.: Theoretical aspects in the use of the inverse Tully-Fisher relation for distance determinations. Astron. Astrophys. 234, 1 (1990b) ADSGoogle Scholar
  72. Teerikorpi, P.: Observational selection bias affecting the determination of the extragalactic distance scale. Annu. Rev. Astron. Astrophys. 35, 101 (1997) ADSCrossRefGoogle Scholar
  73. Teerikorpi, P.: Evidence for the class of the most luminous quasars II. Variability, polarization, and the gap in the M V distribution. Astron. Astrophys. 353, 77 (2000) ADSGoogle Scholar
  74. Teerikorpi, P.: Evidence for the class of the most luminous quasars IV. Cosmological Malmquist bias and the Λ term. Astron. Astrophys. 399, 829 (2003) ADSCrossRefGoogle Scholar
  75. Teerikorpi, P.: On Öpik’s distance evaluation method in a cosmological context. Astron. Astrophys. 531, A10 (2011) ADSCrossRefGoogle Scholar
  76. Theureau, G., Hanski, M., Teerikorpi, P., et al.: Kinematics of the local universe IV Type dependence in the diameter Tully-Fisher relation and implications on the mass-luminosity structure. Astron. Astrophys. 319, 435 (1997a) ADSGoogle Scholar
  77. Theureau, G., Hanski, M., Ekholm, T., et al.: Kinematics of the local universe. V. The value of H 0 from the Tully–Fisher B and D 25 relations for field galaxies. Astron. Astrophys. 322, 730 (1997b) ADSGoogle Scholar
  78. Yahil, A., Tammann, G.A., Sandage, A.: The local group—the solar motion relative to its centroid. Astrophys. J. 217, 903 (1977) ADSCrossRefGoogle Scholar
  79. Zwicky, F.: Morphological Astronomy. Springer, Berlin (1957) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of AstronomySt.Petersburg State UniversitySt.PetersburgRussia
  2. 2.Tuorla Observatory, Department of Physics and AstronomyUniversity of TurkuPiikkiöFinland

Personalised recommendations