Large-Scale Structure: Methods of Analysis

Part of the Astrophysics and Space Science Library book series (ASSL, volume 383)

Abstract

A major discovery of 20th century astronomy was the complex filamentary spatial distribution of galaxies, after large surveys of galaxy redshifts permitted astronomers to move from the study of how galaxies are scattered in the sky to their real spatial arrangement. A rich variety of structures have been revealed, described as binaries, clusters, walls, superclusters, voids, filaments, cells, soap bubbles, sponges, great attractors … They can be viewed as natural appearances of one global master entity—stochastic hierarchical structure. To describe this novel landscape, a new empirical law was found: the power-law behaviour of the galaxy correlations.

Keywords

Density Fluctuation Fractal Density Density Field Conditional Density Galaxy Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baryshev, Yu., Bukhmastova, Yu.: The method of a two-point conditional column density for estimating the fractal dimension of the distribution of galaxies. Astron. Lett. 30, 444 (2004) ADSCrossRefGoogle Scholar
  2. Baryshev, Yu., Ezova, Yu.: Gravitational mesolensing by king objects and quasar–galaxy associations. Astron. Rep. 41, 436 (1997) ADSGoogle Scholar
  3. Calzetti, D., Giavalisco, M., Ruffini, R.: The normalization of the correlation functions for extragalactic structures. Astron. Astrophys. 198, 1 (1988) MathSciNetADSMATHGoogle Scholar
  4. Charlier, C.: Wie ein Unendliche Welt aufgebaut sein kann. Ark. Mat. Astron. Fys. 4(24), 1 (1908) Google Scholar
  5. Charlier, C.: How an infinite world may be built up. Ark. Mat. Astron. Fys. 16(22), 1 (1922) Google Scholar
  6. Coleman, P.H., Pietronero, L.: The fractal structure of the Universe. Phys. Rep. 213, 311 (1992) ADSCrossRefGoogle Scholar
  7. Davis, M., Peebles, P.J.E.: A survey of galaxy redshifts. V. The two-point position and velocity correlations. Astrophys. J. 267, 465 (1983) ADSMATHCrossRefGoogle Scholar
  8. Eckmann, J.-P., Järvenpää, E., Järvenpää, M., Procaccia, I.: On the fractal dimension of the visible universe. In: Klonowski, W. (ed.) Simplicity Behind Complexity, Euroattractor, 2002. Pabst Science, Lengerich (2004) Google Scholar
  9. Falconer, K.: Fractal Geometry. Wiley, New York (1990) MATHGoogle Scholar
  10. Gabrielli, A.: Notes on the average “bi-conditional” density in fractals (2005) (private communication) Google Scholar
  11. Gabrielli, A., Sylos Labini, F.: Fluctuations in galaxy counts: A new test for homogeneity vs. fractality. Europhys. Lett. 54, 286 (2001) ADSCrossRefGoogle Scholar
  12. Gabrielli, A., Sylos Labini, F., Durrer, R.: Biasing in Gaussian random fields and galaxy correlations. Astrophys. J. 531, L1 (2004) ADSCrossRefGoogle Scholar
  13. Gabrielli, A., Sylos Labini, F., Joyce, M., Pietronero, L.: Statistical Physics for Cosmic Structures. Springer, Berlin (2005) Google Scholar
  14. Heinämäki, P., Suhhonenko, I., Saar, E., Einasto, M., Einasto, J., Virtanen, H.: Light-cone simulations: Evolution of dark matter haloes (2005). astro-ph/0507197
  15. Järvenpää, E., Järvenpää, M., MacManus, P., O’Neil, T.C.: Visible parts and dimensions. Nonlinearity 16, 803 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  16. Joyce, M., Montuori, M., Sylos Labini, F.: Fractal correlations in the CfA2-south redshift survey. Astrophys. J. 514, L5 (1999) ADSCrossRefGoogle Scholar
  17. Kerscher, M., Szapudi, I., Szalay, A.S.: A comparison of estimators for the two-point correlation function. Astrophys. J. 535, L13 (2000) ADSCrossRefGoogle Scholar
  18. Kim, J., Park, Ch., Gott, J.R., Dubinski, J.: The horizon run N-body simulation: Baryon acoustic oscillations and topology of large-scale structure of the universe. Astrophys. J. 701, 1547 (2009) ADSCrossRefGoogle Scholar
  19. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon, London (1958) MATHGoogle Scholar
  20. Lovyagin, N.Yu.: Statistical properties of the spatial distribution of galaxies. Astron .Bull. SAO RAN 64, 213 (2009) Google Scholar
  21. Mandelbrot, B.B.: Les objects fractals: forme, hasard et dimension. Flammarion, Paris (1975) Google Scholar
  22. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982) MATHGoogle Scholar
  23. Mandelbrot, B.B.: The fractal range of the distribution of galaxies; crossover to homogeneity, and multifractals. In: Mezzetti, M., et al. (eds.) Large Scale Structure and Motions in the Universe, p. 259. Kluwer Academic, Dordrecht (1989) CrossRefGoogle Scholar
  24. Martinez, V.J., Saar, E.: Statistics of the Galaxy Distribution. Chapman & Hall/CRC, New York (2002) Google Scholar
  25. Massey, R., Rhodes, J., Ellis, R., et al.: Dark matter maps reveal cosmic scaffolding. Nature 445, 286 (2007a) ADSCrossRefGoogle Scholar
  26. Nabokov, N.V., Baryshev, Yu.V.: Method for analyzing the spatial distribution of galaxies on gigaparsec scales. I. Initial principles. Astrophysics 53, 91 (2010a) ADSCrossRefGoogle Scholar
  27. Nabokov, N.V., Baryshev, Yu.V.: Method for analyzing the spatial distribution of galaxies on gigaparsec scales. II. Application to a grid of the HUDF-FDF-COSMOS-HDF surveys. Astrophysics 53, 101 (2010b) ADSCrossRefGoogle Scholar
  28. Peebles, P.J.E.: The Large-Scale Structure of the Universe. Princeton Univ. Press, Princeton (1980) Google Scholar
  29. Peebles, P.J.E.: Principles of Physical Cosmology. Princeton Univ. Press, Princeton (1993) Google Scholar
  30. Pietronero, L.: The fractal structure of the Universe: correlations of galaxies and clusters and the average mass density. Physica A 144, 257 (1987) ADSMATHCrossRefGoogle Scholar
  31. Pietronero, L., Kuper, R.: Stochastic approach to large scale clustering of matter in the universe. In: Pietronero, L., Tosatti, E. (eds.) Fractals in Physics, p. 319. Elsevier, Amsterdam (1986) Google Scholar
  32. Reshetnikov, V.P.: Sky surveys and deep fields of ground-based and space telescopes. Phys. Usp. 48, 1109 (2005) ADSCrossRefGoogle Scholar
  33. Rost, F.: Estimates of the fractal dimension and density of the universe from the empirical mass-radius relation in cluster systems. Preprint (2004) Google Scholar
  34. Selety, F.J.: Beiträgen zum kosmologischen Problem. Ann. Phys. 68(12), 281 (1922) CrossRefGoogle Scholar
  35. Sylos Labini, F., Amendola, L.: The power spectrum in a strongly inhomogeneous universe. Astrophys. J. 468, L1 (1996) ADSCrossRefGoogle Scholar
  36. Sylos Labini, F., Montuori, M., Pietronero, L.: Scale-invariance of galaxy clustering. Phys. Rep. 293, 61 (1998) ADSCrossRefGoogle Scholar
  37. Sylos Labini, F., Vasilyev, N.L., Baryshev, Yu.V.: Large-scale fluctuations in the distribution of galaxies from the two-degree galaxy redshift survey. Astron. Astrophys. 496, 7 (2009a) ADSCrossRefGoogle Scholar
  38. Sylos Labini, F., Vasilyev, N.L., Baryshev, Yu.V.: Breaking the self-averaging properties of spatial galaxy fluctuations in the Sloan digital sky survey data release six. Astron. Astrophys. 508, 17 (2009b) ADSCrossRefGoogle Scholar
  39. Totsuji, H., Kihara, T.: The correlation function for the distribution of galaxies. Publ. Astron. Soc. Jpn. 21, 221 (1969) ADSGoogle Scholar
  40. Vasilyev, N.: Investigation of the methods of correlation analysis of large scale structures and their application to the 2dF survey. Graduate work, Astronomy Department, St.Petersburg University (2004) Google Scholar
  41. Vasilyev, N., Baryshev, Yu., Sylos Labini, F.: Large scale correlations in galaxy clustering from the VL samples of 2dFGRS. Astron. Astrophys. 447, 431 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of AstronomySt.Petersburg State UniversitySt.PetersburgRussia
  2. 2.Tuorla Observatory, Department of Physics and AstronomyUniversity of TurkuPiikkiöFinland

Personalised recommendations