Advertisement

Uncertainty Quantification

  • Andrew D. Richardson
  • Marc Aubinet
  • Alan G. Barr
  • David Y. Hollinger
  • Andreas Ibrom
  • Gitta Lasslop
  • Markus Reichstein
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don’t know. But there are also unknown unknowns. These are things we don’t know we don’t know.

Keywords

Eddy Covariance Sonic Anemometer Coordinate Rotation Energy Balance Closure Gross Ecosystem Productivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

ADR and DYH acknowledge support from the Office of Science (BER), U.S. Department of Energy, through the Terrestrial Carbon Program under Interagency Agreement No. DE-AI02–07ER64355 and through the Northeastern Regional Center of the National Institute for Climatic Change Research.

We also acknowledge funding by the European infrastructure project IMECC (http://imecc.ipsl.jussieu.fr/).

References

  1. Abernethy RB,~Benedict RP, Dowdell RB (1985) ASME measurement uncertainty. J Fluid Eng 107:161–164Google Scholar
  2. Anthoni PM, Law BE, Unsworth MH (1999) Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem. Agric For Meteorol 95:151–168Google Scholar
  3. Anthoni PM, Freibauer A, Kolle O, Schulze ED (2004) Winter wheat carbon exchange in Thuringia, Germany. Agric For Meteorol 121:55–67Google Scholar
  4. Ascough JC, Maier HR, Ravalico JK, Strudley MW (2008) Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecol Model 219:383–399Google Scholar
  5. Aubinet M (2008) Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem. Ecol Appl 18:1368–1378Google Scholar
  6. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30(30):113–175Google Scholar
  7. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Bound Layer Meteorol 108:397–417Google Scholar
  8. Aubinet M, Feigenwinter C, Bernhofer C, Canepa E, Heinesch B, Lindroth A, Montagnani L, Rebmann C, Sedlak P, Van Gorsel E (2010) Advection is not the solution to the nighttime CO2 closure problem – evidence from three different forests. Agric For Meteorol 150:655–664Google Scholar
  9. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9:479–492Google Scholar
  10. Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69:1331–1340Google Scholar
  11. Baldocchi D, Valentini R, Running S, Oechel W, Dahlman R (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Glob Chang Biol 2:159–168Google Scholar
  12. Barnett V,~Lewis T (1994) Outliers in statistical data. Wiley, Chichester/New York, 604 ppGoogle Scholar
  13. Barr AG, Morgenstern K, Black TA, McCaughey JH, Nesic Z (2006) Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric For Meteorol 140:322–337Google Scholar
  14. Berger BW, Davis KJ, Yi CX, Bakwin PS, Zhao CL (2001) Long-term carbon dioxide fluxes from a very tall tower in a northern forest: flux measurement methodology. J Atmos Ocean Technol 18(4):529–542Google Scholar
  15. Bonan G (2008) Ecological climatology, concepts and applications. Cambridge University Press, Cambridge, 550 pGoogle Scholar
  16. Burba GG, McDermitt DK, Grelle A, Anderson DJ, Xu LK (2008) Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Glob Chang Biol 14:1854–1876Google Scholar
  17. Coleman HW, Steele WG (2009) Experimentation, validation, and uncertainty analysis for engineers. Wiley, Hoboken, p 317Google Scholar
  18. Curtis PS et al (2002) Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113:3–19Google Scholar
  19. Dabberdt WF, Lenschow DH, Horst TW, Zimmerman PR, Oncley SP, Delany AC (1993) Atmosphere-surface exchange measurements. Science 260:1472–1481Google Scholar
  20. Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37Google Scholar
  21. de Ligne A, Heinesch B, Aubinet M (2010) New transfer functions for correcting turbulent water vapour fluxes. Bound Layer Meteorol 137:205–221Google Scholar
  22. Desai AR et al (2008) Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agric For Meteorol 148:821–838Google Scholar
  23. Dragoni D,~Schmid HP, Grimmond CSB, Loescher HW (2007) Uncertainty of annual net ecosystem productivity estimated using eddy covariance flux measurements. J Geophys Res Atmos 112:D17102Google Scholar
  24. Dyer AJ, Garratt JR, Francey RJ, Mcilroy IC, Bacon NE, Hyson P, Bradley EF, Denmead OT, Tsvang LR, Volkov YA, Koprov BM, Elagina LG, Sahashi K, Monji N, Hanafusa T, Tsukamoto O, Frenzen P, Hicks BB, Wesely M, Miyake M, Shaw W (1982) An International Turbulence Comparison Experiment (ITCE 1976). Bound Layer Meteorol 24:181–209Google Scholar
  25. Eugster W, McFadden JP, Chapin ES (1997) A comparative approach to regional variation in surface fluxes using mobile eddy correlation towers. Bound Layer Meteorol 85:293–307Google Scholar
  26. Falge E et al (2001a) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107:71–77Google Scholar
  27. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Ta Lai C, Law B, Meyers T, Moncrieff J, Moors EJ, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001b) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69Google Scholar
  28. Feigenwinter C, Bernhofer C, Eichelmann U, Heinesch B, Hertel M, Janous D, Kolle O, Lagergren F, Lindroth A, Minerbi S, Moderow U, Mölder M, Montagnani L, Queck R, Rebmann C, Vestin P, Yernaux M, Zeri M, Ziegler W, Aubinet M (2008) Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agric For Meteorol 148:12–24Google Scholar
  29. Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res Atmos 106:3503–3509Google Scholar
  30. Finnigan J (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32:519–571Google Scholar
  31. Finnigan J (2008) An introduction to flux measurements in difficult conditions. Ecol Appl 18:1340–1350Google Scholar
  32. Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques – part I: averaging and coordinate rotation. Bound Layer Meteorol 107:1–48Google Scholar
  33. Flanagan LB, Johnson BG (2005) Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agric For Meteorol 130:237–253Google Scholar
  34. Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18:1351–1367Google Scholar
  35. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105Google Scholar
  36. Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2006) Some aspects of the energy balance closure problem. Atmos Chem Phys 6:4395–4402Google Scholar
  37. Fox A et al (2009) The REFLEX project: comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data. Agric For Meteorol 149:1597–1615Google Scholar
  38. Franks SW, Beven KJ, Quinn PF, Wright IR (1997) On the sensitivity of soil–vegetation–atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration. Agric For Meteorol 86:63–75Google Scholar
  39. Gough CM, Vogel CS, Schmid HP, Su HB, Curtis PS (2008) Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agric For Meteorol 148:158–170Google Scholar
  40. Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Chang Biol 2:169–182Google Scholar
  41. Grant RF et al (2005) Intercomparison of techniques to model high temperature effects on CO2 and energy exchange in temperate and boreal coniferous forests. Ecol Model 188:217–252Google Scholar
  42. Hagen SC,~Braswell BH, Linder E, Frolking S, Richardson AD, Hollinger DY (2006) Statistical uncertainty of eddy flux-based estimates of gross ecosystem carbon exchange at Howland Forest, Maine. Journal of Geophysical Research-Atmospheres 111:D08S03Google Scholar
  43. Haslwanter A, Hammerle A, Wohlfahrt G (2009) Open-path vs. Closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: a long-term perspective. Agric For Meteorol 149:291–302Google Scholar
  44. Hollinger DY, Richardson AD (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol 25:873–885Google Scholar
  45. Hollinger DY et al (2004) Spatial and temporal variability in forest-atmosphere CO2 exchange. Glob Chang Biol 10:1689–1706Google Scholar
  46. Horst TW (1997) A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Bound Layer Meteorol 82:219–233Google Scholar
  47. Ibrom A, Jarvis PG, Clement RB, Morgenstern K, Oltchev A, Medlyn B, Wang YP, Wingate L, Moncrieff J, Gravenhorst G (2006) A comparative analysis of simulated and observed photosynthetic CO2 uptake in two coniferous forest canopies. Tree Physiol 26:845–864Google Scholar
  48. Ibrom A, Dellwik E, Flyvbjerg H, Jensen NO, Pilegaard K (2007a) Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agric For Meteorol 147:140–156Google Scholar
  49. Ibrom A, Dellwik E, Larsen SE, Pilegaard K (2007b) On the use of the Webb – Pearman – Leuning – theory for closed-path eddy correlation measurements. Tellus B 59B:937–946Google Scholar
  50. Järvi L, Mammarella I, Eugster W, Ibrom A, Siivola E, Dellwik E, Keronen P, Burba G, Vesala T (2009) Comparison of net CO2 fluxes measured with open- and closed-path infrared gas analyzers in urban complex environment. Boreal Environ Res 14:499–514Google Scholar
  51. Kanda M, Ianagaki A, Letzel MO, Raasch S, Wataqnabe T (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Bound Layer Meteorol 110:381–404Google Scholar
  52. Katul G et al (1999) Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest. Bound Layer Meteorol 93:1–28Google Scholar
  53. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–7Google Scholar
  54. Kruijt B et al (2004) The robustness of eddy correlation fluxes for Amazon rain forest conditions. Ecol Appl 14:S101–S113Google Scholar
  55. Lasslop G, Reichstein M, Kattge J, Papale D (2008) Influences of observation errors in eddy flux data on inverse model parameter estimation. Biogeosciences 5:1311–1324Google Scholar
  56. Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Chang Biol 16:187–208Google Scholar
  57. Lee XH, Fuentes JD, Staebler RM, Neumann HH (1999) Long-term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada. J Geophys Res Atmos 104:15975–15984Google Scholar
  58. Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics. J Atmos Ocean Technol 11:661–673Google Scholar
  59. Leuning R, Zegelin SJ, Jones K, Keith H, Hughes D (2008) Measurement of horizontal and vertical advection of CO2 within a forest canopy. Agric For Meteorol 148:1777–1797Google Scholar
  60. Liu HP, Randerson JT, Lindfors J, Massman WJ, Foken T (2006) Consequences of incomplete surface energy balance closure for CO2 fluxes from open-path CO2/H2O infrared gas analysers. Bound Layer Meteorol 120:65–85Google Scholar
  61. Liu M, He HL, Yu GR, Luo YQ, Sun XM, Wang HM (2009) Uncertainty analysis of CO2 flux components in subtropical evergreen coniferous plantation. Sci China Ser D Earth Sci 52:257–268Google Scholar
  62. Loescher HW et al (2005) Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer-thermometers. Agric For Meteorol 133:119–139Google Scholar
  63. Loescher HW, Law BE, Mahrt L, Hollinger DY, Campbell J, Wofsy SC (2006) Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. J Geophys Res Atmos 111: Art. No. D21S90Google Scholar
  64. Luyssaert S et~al. (2009) Toward a consistency cross-check of eddy covariance flux-based and biometric estimates of ecosystem carbon balance. Glob Biogeochem Cycles 23: Art. No. GB3009Google Scholar
  65. Mahrt L, Lee X, Black A, Neumann H, Staebler RM (2000) Nocturnal mixing in a forest subcanopy. Agric For Meteorol 101:67–78Google Scholar
  66. Mammarella I, Launiainen S, Gronholm T, Keronen P, Pumpanen J, Rannik U, Vesala T (2009) Relative humidity effect on the high-frequency attenuation of water vapor flux measured by a closed-path eddy covariance system. J Atmos Ocean Technol 26:1852–1866Google Scholar
  67. Mann J, Lenschow DH (1994) Errors in airborne flux measurements. J Geophys Res Atmos 99:14519–14526Google Scholar
  68. Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104:185–198Google Scholar
  69. Massman W, Ibrom A (2008) Attenuation of trace gas fluctuations associated with turbulent flow in tubes: application to sampling water vapor with closed-path eddy covariance systems. In: European Geosciences Union General Assembly, 2008. EGU, Vienna, EGU2008-A-02259Google Scholar
  70. Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric For Meteorol 113:121–144Google Scholar
  71. Medlyn BE, Robinson AP, Clement R, McMurtrie RE (2005) On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls. Tree Physiol 25:839–857Google Scholar
  72. Moffat AM et al (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147:209–232Google Scholar
  73. Moncrieff JB, Malhi Y, Leuning R (1996) The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Glob Chang Biol 2:231–240Google Scholar
  74. Moureaux C, Debacq A, Hoyaux J, Suleau M, Tourneur D, Vancutsem F, Bodson B, Aubinet M (2008) Carbon balance assessment of a Belgian winter wheat crop (Triticum aestivum L.). Glob Chang Biol 14(6):1353–1366Google Scholar
  75. Nakai T, van der Molen MK, Gash JHC, Kodama Y (2006) Correction of sonic anemometer angle of attack errors. Agric For Meteorol 136:19–30Google Scholar
  76. Ocheltree TW, Loescher HW (2007) Design of the AmeriFlux portable eddy covariance system and uncertainty analysis of carbon measurements. J Atmos Ocean Technol 24:1389–1406Google Scholar
  77. Oren R et al (2006) Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements. Glob Chang Biol 12:883–896Google Scholar
  78. Papale D, Reichstein M, Canfora E, Aubinet M, Bernhofer C, Longdoz B, Kutsch W, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–583Google Scholar
  79. Rannik Ü, Vesala T (1999) Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Bound Layer Meteorol 91:259–280Google Scholar
  80. Rannik Ü, Vesala T, Keskinen R (1997) On the damping of temperature fluctuations in a circular tube relevant to the eddy covariance measurement technique. J Geophys Res Atmos 102(11D):12789–12794Google Scholar
  81. Rannik U, Kolari P, Vesala T, Hari P (2006) Uncertainties in measurement and modelling of net ecosystem exchange of a forest. Agric For Meteorol 138:244–257Google Scholar
  82. Raupach MR et al (2005) Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. Glob Chang Biol 11:378–397Google Scholar
  83. Rebmann C et al (2005) Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor Appl Climatol 80(2–4):121–141Google Scholar
  84. Richardson AD, Hollinger DY (2005) Statistical modeling of ecosystem respiration using eddy covariance data: maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models. Agric For Meteorol 131:191–208Google Scholar
  85. Richardson AD, Hollinger DY (2007) A method to estimate the additional uncertainty in gap-filled NEE resulting from long gaps in the CO2 flux record. Agric For Meteorol 147:199–208Google Scholar
  86. Richardson AD et al (2006a) Comparing simple respiration models for eddy flux and dynamic chamber data. Agric For Meteorol 141:219–234Google Scholar
  87. Richardson AD, Hollinger DY, Burba GG, Davis KJ, Flanagan LB, Katul GG, Munger JW, Ricciuto DM, Stoy PC, Suyker AE, Verma SB, Wofsy SC (2006b) A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agric For Meteorol 136:1–18Google Scholar
  88. Richardson AD et al (2008) Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals. Agric For Meteorol 148:38–50Google Scholar
  89. Savage K, Davidson EA, Richardson AD (2008) A conceptual and practical approach to data quality and analysis procedures for high-frequency soil respiration measurements. Funct Ecol 22:1000–1007Google Scholar
  90. Schelhaas MJ, Nabuurs GJ, Jans W, Moors E, Sabate S, Daamen WP (2004) Closing the carbon budget of a Scots pine forest in the Netherlands. Clim Chang 67:309–328Google Scholar
  91. Schmid HP, Su HB, Vogel CS, Curtis PS (2003) Ecosystem-atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. J Geophys Res Atmos 108(D14): Art No. 4417Google Scholar
  92. Serrano-Ortiz P, Kowalski AS, Domingo F, Ruiz B, Alados-Arboledas L (2008) Consequences of uncertainties in CO2 density for estimating net ecosystem CO2 exchange by open-path eddy covariance. Bound Layer Meteorol 126:209–218Google Scholar
  93. Smith WK, Hollinger DY (1991) Stomatal behavior. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, pp 141–174Google Scholar
  94. Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122:139–156Google Scholar
  95. Stauch VJ,~Jarvis AJ, Schulz K (2008) Estimation of net carbon exchange using eddy covariance CO2 flux observations and a stochastic model. J Geophys Res Atmos 113Google Scholar
  96. Su HB, Schmid HP, Grimmond CSB, Vogel CS, Oliphant AJ (2004) Spectral characteristics and correction of long-term eddy-covariance measurements over two mixed hardwood forests in non-flat terrain. Bound Layer Meteorol 110:213–253Google Scholar
  97. Taylor JR (1991) An introduction to error analysis. University Science, SausalitoGoogle Scholar
  98. Trudinger CM et al (2007) OptIC project: an intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models. J Geophys Res Biogeosci 112:G02027Google Scholar
  99. Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300Google Scholar
  100. Wang YP, Trudinger CM, Enting IG (2009) A review of applications of model-data fusion to studies of terrestrial carbon fluxes at different scales. Agric For Meteorol 149:1829–1842Google Scholar
  101. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106:85–100Google Scholar
  102. Wesely ML, Hart RL (1985) Variability of short term eddy-correlation estimates of mass exchange. In: Hutchinson BA, Hicks BB (eds) The forest-atmosphere interaction. D. Reidel, Dordrecht, pp 591–612Google Scholar
  103. Williams M et al (2009) Improving land surface models with FLUXNET data. Biogeosciences 6:1341–1359Google Scholar
  104. Wilson KB, Goldstein AH, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Law B, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243Google Scholar
  105. Wohlfahrt G, Bahn M, Haslwanter A, Newesely C, Cernusca A (2005) Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow. Agric For Meteorol 130:13–25Google Scholar
  106. Wolf A, Saliendra N, Akshalov K, Johnson DA, Laca E (2008) Effects of different eddy covariance correction schemes on a energy balance closure and comparisons with the modified Bowen ratio system. Agric For Meteorol 148:942–952Google Scholar
  107. Yanai RD, Battles JJ, Richardson AD, Rastetter EB, Wood DM, Blodgett C (2010) Estimating uncertainty in ecosystem budget calculations. Ecosystems 13:239–248Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Andrew D. Richardson
    • 1
  • Marc Aubinet
    • 2
  • Alan G. Barr
    • 3
  • David Y. Hollinger
    • 4
  • Andreas Ibrom
    • 5
  • Gitta Lasslop
    • 6
  • Markus Reichstein
    • 6
  1. 1.Department of Organismic and Evolutionary BiologyHarvard University HerbariaCambridgeUSA
  2. 2.Unit of Biosystem Physics, Gembloux Agro-Bio Tech.University of LiegeGemblouxBelgium
  3. 3.Environment CanadaSaskatoonCanada
  4. 4.USDA Forest ServiceDurhamUSA
  5. 5.Risø National Laboratory for Sustainable EnergyTechnical University of Denmark (DTU)RoskildeDenmark
  6. 6.Max-Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations