Skip to main content

Corrections and Data Quality Control

  • Chapter
  • First Online:
Eddy Covariance

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

This chapter describes corrections that must be applied to measurements because practical instrumentation cannot fully meet the requirements of the underlying micrometeorological theory. Typically, measurements are made in a finite sampling volume rather than at a single point, and the maximum frequency response of the sensors is less than the highest frequencies of the turbulent eddies responsible for the heat and mass transport. Both of these cause a loss of the high-frequency component of the covariances used to calculate fluxes. Errors also arise in calculating fluxes of trace gas quantities using open-path analyzers because of spurious density fluctuations arising from the fluxes of heat and water vapor. This chapter gives the reader an overview of how these sources of error can be eliminated or reduced using some model assumptions and additional measurements. Corrections needed for some specific instruments are presented (Sect. 4.1), followed by a discussion of the generally observed lack of closure of the energy balance using the sum of latent and sensible heat fluxes (Sect. 4.2). The chapter closes with a discussion of measures needed to determine the quality of the final calculated fluxes (Sect. 4.3)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amiro BD (1990) Comparison of turbulence statistics within three boreal forest canopies. Bound Layer Meteorol 51:99–121

    Google Scholar 

  • Anderson DE, Verma SB, Clement RJ, Baldocchi DD, Matt DR (1986) Turbulence spectra of CO2, water vapour, temperature and velocity over a deciduous forest. Agric For Meteorol 38:81–99

    Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology. Academic, San Diego, 415 pp

    Google Scholar 

  • Aubinet M et al (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175

    Google Scholar 

  • Aubinet M, Chermanne B, Vandenhaute M, Longdoz B, Yernaux M, Laitat E (2001) Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric For Meteorol 108:293–315

    Google Scholar 

  • Bernhardt K, Piazena H (1988) Zum Einfluß turbulenzbedingter Dichteschwankungen auf die Bestimmung turbulenter Austauschströme in der Bodenschicht. Z Meteorol 38:234–245

    Google Scholar 

  • Beyrich F, Mengelkamp H-T (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment – an overview. Bound Layer Meteorol 121:5–32

    Google Scholar 

  • Beyrich F, Herzog H-J, Neisser J (2002) The LITFASS project of DWD and the LITFASS-98 experiment: the project strategy and the experimental setup. Theor Appl Climatol 73:3–18

    Google Scholar 

  • Brook RR (1978) The influence of water vapor fluctuations on turbulent fluxes. Bound Layer Meteorol 15:481–487

    Google Scholar 

  • Burba G, Anderson D (2010) A brief practical guide to eddy covariance flux measurements. Li-COR Inc., Lincoln

    Google Scholar 

  • Burba G, McDermitt DK, Grelle A, Anderson DJ, Xu L (2008) Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Glob Chang Biol 14:1854–1876

    Google Scholar 

  • Cava D, Contini D, Donateo A, Martano P (2008) Analysis of short-term closure of the surface energy balance above short vegetation. Agric For Meteorol 148:82–93

    Google Scholar 

  • Clement RJ, Burba GG, Grelle A, Anderson DJ, Moncrieff JB (2009) Improved trace gas flux estimation through IRGA sampling optimization. Agric For Meteorol 149:623–638

    Google Scholar 

  • Culf AD, Foken T, Gash JHC (2004) The energy balance closure problem. In: Kabat P et al (eds) Vegetation, water, humans and the climate. A new perspective on an interactive system. Springer, Berlin/Heidelberg, pp 159–166

    Google Scholar 

  • de Ligne A, Heinesch B, Aubinet M (2010) New transfer functions for correcting turbulent water vapour fluxes. Bound Layer Meteorol 137(2):205–221

    Google Scholar 

  • DeGaetano AT (1997) A quality-control routine for hourly wind observations. J Atmos Ocean Technol 14:308–317

    Google Scholar 

  • Desjardins RL (1985) Carbon dioxide budget of maize. Agric For Meteorol 36:29–41

    Google Scholar 

  • Desjardins RL, MacPherson JI, Schuepp PH, Karanja F (1989) An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Bound Layer Meteorol 47:55–69

    Google Scholar 

  • Dyer AJ (1981) Flow distortion by supporting structures. Bound Layer Meteorol 20:363–372

    Google Scholar 

  • Essenwanger OM (1969) Analytical procedures for the quality control of meteorological data. In: Proceedings of the American meteorological society symposium on meteorological observations and instrumentation. Meteorol Monogr 11(33):141–147

    Google Scholar 

  • Eugster W, Senn W (1995) A cospectral correction for measurement of turbulent NO2 flux. Bound Layer Meteorol 74:321–340

    Google Scholar 

  • Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res D106:3503–3509

    Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques, part I: averaging and coordinate rotation. Bound Layer Meteorol 107:1–48

    Google Scholar 

  • Foken T (2008a) The energy balance closure problem - an overview. Ecol Appl 18:1351–1367

    Google Scholar 

  • Foken T (2008b) Micrometeorology. Springer, Berlin/Heidelberg, 308 pp

    Google Scholar 

  • Foken T, Oncley SP (1995) Results of the workshop ‘Instrumental and methodical problems of land surface flux measurements’. Bull Am Meteorol Soc 76:1191–1193

    Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105

    Google Scholar 

  • Foken T, Skeib G, Richter SH (1991) Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements. Z Meteorol 41:311–315

    Google Scholar 

  • Foken T, Dlugi R, Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface. Meteorol Z 4:91–118

    Google Scholar 

  • Foken T et al~(1997) Results of the LINEX-96/2 experiment, vol 48, Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse. DWD, Geschäftsbereich Forschung und Entwicklung, Offenbach am Main, 75 pp

    Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X et al (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208

    Google Scholar 

  • Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2006) Some aspects of the energy balance closure problem. Atmos Chem Phys 6:4395–4402

    Google Scholar 

  • Foken T et al (2010) Energy balance closure for the LITFASS-2003 experiment. Theor Appl Climatol 101:149–160

    Google Scholar 

  • Foken T,~Aubinet M, Finnigan J, Leclerc MY, Mauder M, Paw UKT (2011) Results of a panel discussion about the energy balance closure correction for trace gases. Bull Am Meteorol Soc 92:ES13–ES18. doi:10.1175/2011BAMS3130.1171

    Google Scholar 

  • Friedrich K, Mölders N, Tetzlaff G (2000) On the influence of surface heterogeneity on the Bowen-ratio: a theoretical case study. Theor Appl Climatol 65:181–196

    Google Scholar 

  • Fuehrer PL, Friehe CA (2002) Flux correction revised. Bound Layer Meteorol 102:415–457

    Google Scholar 

  • Garratt JR (1990) The internal boundary layer - a review. Bound Layer Meteorol 50:171–203

    Google Scholar 

  • Göckede M et al (2008) Quality control of CarboEurope flux data – part 1: coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences 5:433–450

    Google Scholar 

  • Grelle A, Burba G (2007) Fine-wire thermometer to correct CO2 fluxes by open-path analyzers for artificial density fluctuations. Agric For Meteorol 147:48–57

    Google Scholar 

  • Gurjanov AE, Zubkovskij SL, Fedorov MM (1984) Mnogokanalnaja avtomatizirovannaja sistema obrabotki signalov na baze EVM (Automatic multi-channel system for signal analysis with electronic data processing). Geod Geophys Veröff, R II 26:17–20

    Google Scholar 

  • Gurvitch AS (1962) Spectry pulsacii vertikalnoj komponenty skorosti vetra i ich svjazi s mikrometeorologitcheskimi uslovijach (Spectra of the fluctuations of the vertical wind component and the connection to micrometeorological conditions). Atmos Turbulent – Trudy inst fiziki atmos AN SSSR 4:101–136

    Google Scholar 

  • Hatfield JL, Baker JM (eds) (2005) Micrometeorology in agricultural systems. American Society of Agronomy, Madison, 584 pp

    Google Scholar 

  • Haugen DA (1978) Effects of sampling rates and averaging periods on meteorological measurements. In: Fourth symposium meteorological observations and Instrumentation, Am Meteorol Soc, pp 15–18

    Google Scholar 

  • Heusinkveld BG, Jacobs AFG, Holtslag AAM, Berkowicz SM (2004) Surface energy balance closure in an arid region: role of soil heat flux. Agric For Meteorol 122:21–37

    Google Scholar 

  • Hiller R, Zeeman MJ, Eugster W (2008) Eddy-covariance flux measurements in the complex terrain of an Alpine valley in Switzerland. Bound Layer Meteorol 127:449–467

    Google Scholar 

  • Högström U, Smedman A (2004) Accuracy of sonic anemometers: laminar wind-tunnel calibrations compared to atmospheric in situ calibrations against a reference instrument. Bound Layer Meteorol 111:33–54

    Google Scholar 

  • Højstrup J (1981) A simple model for the adjustment of velocity spectra in unstable conditions downstream of an abrupt change in roughness and heat flux. Bound Layer Meteorol 21:341–356

    Google Scholar 

  • Højstrup J (1993) A statistical data screening procedure. Meas Sci Technol 4:153–157

    Google Scholar 

  • Horst TW (1973) Spectral transfer functions for a three component sonic-anemometer. J Appl Meteorol 12:1072–1075

    Google Scholar 

  • Horst TW (1997) A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Bound Layer Meteorol 82:219–233

    Google Scholar 

  • Horst TW (2000) On frequency response corrections for eddy covariance flux measurements. Bound Layer Meteorol 94:517–520

    Google Scholar 

  • Horst TW, Lenschow DH (2009) Attenuation of scalar fluxes measured with spatially-displaced sensors. Bound Layer Meteorol 130:275–300

    Google Scholar 

  • Hyson P, Garratt JR, Francey RJ (1977) Algebraic und elektronic corrections of measured uw covariance in the lower atmosphere. Bound Layer Meteorol 16:43–47

    Google Scholar 

  • Ibrom A, Dellwik E, Flyvbjerg H, Jensen NO, Pilegaard K (2007a) Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agric For Meteorol 147:140–156

    Google Scholar 

  • Ibrom A, Dellwik E, Larsen SE, Pilegaard K (2007b) On the use of the Webb–Pearman–Leuning theory for closed-path eddy correlation measurements. Tellus B 59:937–946

    Google Scholar 

  • Inagaki A, Letzel MO, Raasch S, Kanda M (2006) Impact of surface heterogeneity on energy balance: a study using LES. J Meteorol Soc Jpn 84:187–198

    Google Scholar 

  • Ingwersen J et al (2011) Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand. Agric For Meteorol 151:345–355

    Google Scholar 

  • Järvi L, Mammarella I, Eugster W, Ibrom A, Siivola E, Dellwik E, Keronen P, Burba G, Vesala T (2009) Comparison of net CO2 fluxes measured with open- and closed-path infrared gas analyzers in urban complex environment. Boreal Environ Res 14:499–514

    Google Scholar 

  • Johansson C, Smedman A, Högström U, Brasseur JG, Khanna S (2001) Critical test of Monin-Obukhov similarity during convective conditions. J Atmos Sci 58:1549–1566

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, 289 pp

    Google Scholar 

  • Kaimal JC, Gaynor JE (1991) Another look to sonic thermometry. Bound Layer Meteorol 56:401–410

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Haugen DH (1968) Deriving power spectra from a three component sonic anemometer. J Appl Meteorol 7:827–834

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface layer turbulence. Q J R Meteorol Soc 98:563–589

    Google Scholar 

  • Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Bound Layer Meteorol 110:381–404

    Google Scholar 

  • Klaassen W, van Breugel PB, Moors EJ, Nieveen JP (2002) Increased heat fluxes near a forest edge. Theor Appl Climatol 72:231–243

    Google Scholar 

  • Kljun N, Calanca P, Rotach M, Schmid HP (2004) A simple parameterization for flux footprint predictions. Bound Layer Meteorol 112:503–523

    Google Scholar 

  • Kondo F, Tsukamoto O (2008) Evaluation of Webb correction on CO2 flux by eddy covariance technique using open-path gas analyzer over asphalt. J Agric Meteorol 64:1–8

    Google Scholar 

  • Kristensen L, Mann J, Oncley SP, Wyngaard JC (1997) How close is close enough when measuring scalar fluxes with displaced sensors. J Atmos Ocean Technol 14:814–821

    Google Scholar 

  • Lee X, Black TA (1994) Relating eddy correlation sensible heat flux to horizontal sensor separation in the unstable atmospheric surface layer. J Geophys Res 99(D9):18545–18553

    Google Scholar 

  • Lenschow DH, Raupach MR (1991) The attenuation of fluctuations in scalar concentrations through sampling tubes. J Geophys Res 96:5259–5268

    Google Scholar 

  • Leuning R (2004) Measurements of trace gas fluxes in the atmosphere using eddy covariance: WPL corrections revisited. In: Lee X et al (eds) Handbook of micrometeorology: a guide for surface flux measurements and analysis. Kluwer, Dordrecht, pp 119–132

    Google Scholar 

  • Leuning R (2007) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Bound Layer Meteorol 123:263–267

    Google Scholar 

  • Leuning R, Judd MJ (1996) The relative merits of open- and closed path analysers for measurements of eddy fluxes. Glob Chang Biol 2:241–254

    Google Scholar 

  • Leuning R, King KM (1992) Comparison of eddy-covariance measurements of CO2 fluxes by open- and closed-path CO2 analysers. Bound Layer Meteorol 59:297–311

    Google Scholar 

  • Leuning R, Legg BJ (1982) Comments on ‘The influence of water vapor fluctuations on turbulent fluxes’ by Brook. Bound Layer Meteorol 23:255–258

    Google Scholar 

  • Leuning RL, Moncrieff JB (1990) Eddy covariance CO2 flux measurements using open and closed path CO2 analysers: correction for analyser water vapour sensitivity and damping of fluctuations in air sampling tubes. Bound Layer Meteorol 53:63–76

    Google Scholar 

  • Liebethal C (2006) On the determination of the ground heat flux in micrometeorology and its influence on the energy balance closure. PhD thesis, University of Bayreuth

    Google Scholar 

  • Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Bound Layer Meteorol 109:99–106

    Google Scholar 

  • Liebethal C, Foken T (2004) On the significance of the Webb correction to fluxes, Corrigendum. Bound Layer Meteorol 113:301

    Google Scholar 

  • Liu H (2005) An alternative approach for CO2 flux correction caused by heat and water vapour transfer. Bound Layer Meteorol 115:151–168

    Google Scholar 

  • Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Bound Layer Meteorol 100:459–468

    Google Scholar 

  • Liu H, Randerson JT, Lindfors J, Massman WJ, Foken T (2006) Consequences of incomplete surface energy balance closure for CO2 fluxes from open-path CO2/H2O infrared gas analyzers. Bound Layer Meteorol 120:65–85

    Google Scholar 

  • Loescher HW et al (2005) Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers. Agric For Meteorol 133: 119–139

    Google Scholar 

  • Mahrt L (1991) Eddy asymmetry in the sheared heated boundary layer. J Atmos Sci 48: 472–492

    Google Scholar 

  • Mahrt L (1998) Flux sampling errors for aircraft and towers. J Atmos Ocean Technol 15: 416–429

    Google Scholar 

  • Mammarella I, Launiainen S, Grönholm T, Keronen P, Pumpanen J, Rannik Ü, Vesala T (2009) Relative humidity effect on the high frequency attenuation of water vapour flux measured by a closed-path eddy covariance system. J Atmos Ocean Technol A26:1856–1866

    Google Scholar 

  • Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104:185–198

    Google Scholar 

  • Massman WJ, Ibrom A (2008) Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow. Atmos Chem Phys 8:6245–6259

    Google Scholar 

  • Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2, vol 26, Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol. Univ., Abt. Mikrometeorologie, Bayreuth, 42 pp. ISBN 1614–8916

    Google Scholar 

  • Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol Z 15:597–609

    Google Scholar 

  • Mauder M, Liebethal C, Göckede M, Leps J-P, Beyrich F, Foken T (2006) Processing and quality control of flux data during LITFASS-2003. Bound Layer Meteorol 121:67–88

    Google Scholar 

  • Mauder M, Jegede OO, Okogbue EC, Wimmer F, Foken T (2007a) Surface energy flux measurements at a tropical site in West-Africa during the transition from dry to wet season. Theor Appl Climatol 89:171–183

    Google Scholar 

  • Mauder M et al (2007b) The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy covariance sensors and post-field data processing methods. Bound Layer Meteorol 123:29–54

    Google Scholar 

  • Mauder M, Foken T, Clement R, Elbers J, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data - part 2: inter-comparison of eddy-covariance software. Biogeosciences 5:451–462

    Google Scholar 

  • Meijninger WML, Lüdi A, Beyrich F, Kohsiek W, DeBruin HAR (2006) Scintillometer-based turbulent surface fluxes of sensible and latent heat over heterogeneous a land surface - a contribution to LITFASS-2003. Bound Layer Meteorol 121:89–110

    Google Scholar 

  • Mengelkamp H-T et al (2006) Evaporation over a heterogeneous land surface: the EVA_GRIPS project. Bull Am Meteorol Soc 87:775–786

    Google Scholar 

  • Meyers TP, Hollinger SE (2004) An assessment of storage terms in the surface energy of maize and soybean. Agric For Meteorol 125:105–115

    Google Scholar 

  • Moncrieff J (2004) Surface turbulent fluxes. In: Kabat P et al (eds) Vegetation, water, humans and the climate. A new perspective on an interactive system. Springer, Berlin/Heidelberg, pp 173–182

    Google Scholar 

  • Moncrieff JB et al (1997) A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. J Hydrol 188–189:589–611

    Google Scholar 

  • Monji N, Inoue M, Hamotani K (1994) Comparison of eddy heat fluxes between inside and above a coniferous forest. J Agric Meteorol 50:23–31

    Google Scholar 

  • Monteith JL, Unsworth MH (2008) Principles of environmental physics, 3rd edn. Elsevier/Academic Press, Amsterdam/Boston, 418 pp

    Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Bound Layer Meteorol 37:17–35

    Google Scholar 

  • Nakai T, van der Molen MK, Gash JHC, Kodama Y (2006) Correction of sonic anemometer angle of attack errors. Agric For Meteorol 136:19–30

    Google Scholar 

  • Nicholls S, Smith FB (1982) On the definition of the flux of sensible heat. Bound Layer Meteorol 24:121–127

    Google Scholar 

  • Obukhov AM (1960) O strukture temperaturnogo polja i polja skorostej v uslovijach konvekcii (Structure of the temperature and velocity fields under conditions of free convection). Izv AN SSSR, ser Geofiz 1392–1396

    Google Scholar 

  • Oncley SP, Businger JA, Itsweire EC, Friehe CA, LaRue JC, Chang SS (1990) Surface layer profiles and turbulence measurements over uniform land under near-neutral conditions. In: 9th symposium on boundary layer and turbulence, Roskilde, Denmark, April 30–May 3, 1990, Am Meteorol Soc City pp 237–240

    Google Scholar 

  • Oncley SP et al (2007) The energy balance experiment EBEX-2000, part I: overview and energy balance. Bound Layer Meteorol 123:1–28

    Google Scholar 

  • Othaki E (1985) On the similarity in atmospheric fluctuations of atmospheric carbon dioxide, water vapour and temperature over vegetated fields. Bound Layer Meteorol 32:25–37

    Google Scholar 

  • Panin GN, Tetzlaff G, Raabe A (1998) Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions. Theor Appl Climatol 60:163–178

    Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence – models and methods for engineering applications. Wiley, New York, 397 pp

    Google Scholar 

  • Raabe A (1991) Die Höhe der internen Grenzschicht. Z Meteorol 41:251–261

    Google Scholar 

  • Richardson AD et al (2006) A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agric For Meteorol 136:1–18

    Google Scholar 

  • Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Bound Layer Meteorol 120:39–63

    Google Scholar 

  • Sakai R, Fitzjarrald D, Moore KE (2001) Importance of low-frequency contributions to eddy fluxes observed over rough surfaces. J Appl Meteorol 40:2178–2192

    Google Scholar 

  • Schmid HP, Bünzli D (1995a) The influence of the surface texture on the effective roughness length. Q J R Meteorol Soc 121:1–21

    Google Scholar 

  • Schmid HP, Bünzli D (1995b) Reply to comments by E. M. Blyth on ‘The influence of surface texture on the effective roughness length’. Q J R Meteorol Soc 121:1173–1176

    Google Scholar 

  • Schotanus P, Nieuwstadt FTM, DeBruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Bound Layer Meteorol 26:81–93

    Google Scholar 

  • Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound Layer Meteorol 50:355–373

    Google Scholar 

  • Shearman RJ (1992) Quality assurance in the observation area of the Meteorological Office. Meteorol Mag 121:212–216

    Google Scholar 

  • Silverman BA (1968) The effect of the spectral averaging on spectral estimation. J Appl Meteorol 7:168–172

    Google Scholar 

  • Smith SR, Camp JP, Legler DM (1996) Handbook of quality control, procedures and methods for surface meteorology data. Center for Ocean Atmospheric Prediction Studies,TOGA/COARE, Technical Report. 96–3:60 pp. [Available from Florida State University, Tallahassee, FL, 32306–33041]

    Google Scholar 

  • Steinfeld G, Letzel MO, Raasch S, Kanda M, Inagaki A (2007) Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study. Bound Layer Meteorol 123:77–98

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Acad. Publ, Dordrecht/Boston/London, 666 pp

    Google Scholar 

  • Su HB, Schmid HP, Grimmond CSB, Vogel CS, Oliphant AJ (2004) Spectral characteristics and correction of long-term eddy-covariance measurements over two mixed hardwood forests in non-flat terrain. Bound Layer Meteorol 110:213–253

    Google Scholar 

  • Tanner CB, Thurtell GW (1969) Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer. ECOM, United States Army Electronics Command, Research and Development, University of Wisconsin, Madison

    Google Scholar 

  • Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of the krypton hygrometer in surface flux measurements. In: Allen RG (ed) Management of irrigation and drainage systems: integrated perspectives. American Society of Civil Engineers, New York, pp 945–952

    Google Scholar 

  • Thomas C, Foken T (2002) Re-evaluation of integral turbulence characteristics and their parameterisations. In: 15th conference on turbulence and boundary layers, Wageningen, NL, 15–19 July 2002, Am Meteorol Soc, City, pp 129–132

    Google Scholar 

  • Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound Layer Meteorol 123:317–337

    Google Scholar 

  • Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300

    Google Scholar 

  • van der Molen MK, Gash JHC, Elbers JA (2004) Sonic anemometer (co)sine response and flux measurement: II the effect of introducing an angle of attack dependent calibration. Agric For Meteorol 122:95–109

    Google Scholar 

  • van Dijk A (2002) Extension to 3D of “The effect of line averaging on scalar flux measurements with a sonic anemometer near the surface” by Kristensen and Fitzjarrald. J Atmos Ocean Technol 19:80–82

    Google Scholar 

  • van Dijk A, Kohsiek W, DeBruin HAR (2003) Oxygen sensitivity of krypton and Lyman-alpha hygrometers. J Atmos Ocean Technol 20:143–151

    Google Scholar 

  • van Dijk A, Kohsiek W, DeBruin HAR (2004) The principles of surface flux physics: theory, practice and description of the ECPACK library. University of Wageningen, Wageningen

    Google Scholar 

  • VDI (2011) Umweltmeteorologie – Meteorologische Messungen - Grundlagen (Environmental meteorology – Meteorological measurements - Basics). Beuth-Verlag, Berlin, VDI 3786, Blatt 3781, in print pp

    Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526

    Google Scholar 

  • Webb EK (1982) On the correction of flux measurements for effects of heat and water vapour transfer. Bound Layer Meteorol 23:251–254

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100

    Google Scholar 

  • Werle P, D’Amato F, Viciani S (2008) Tunable diode-laser spectroscopy: principles, performance, perspectives. In: Lackner M (ed) Lasers in chemistry – probing matter. Wiley-VCH, Weinheim, pp 255–275

    Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound Layer Meteorol 99:127–150

    Google Scholar 

  • Wilson KB et al (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–234

    Google Scholar 

  • Wyngaard JC (1981) The effects of probe-induced flow distortion on atmospheric turbulence measurements. J Appl Meteorol 20:784–794

    Google Scholar 

  • Wyngaard JC, Coté OR (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28:190–201

    Google Scholar 

  • Wyngaard JC, Coté OR, Izumi Y (1971) Local free convection, similarity and the budgets of shear stress and heat flux. J Atmos Sci 28:1171–1182

    Google Scholar 

  • Zhang G, Thomas C, Leclerc MY, Karipot A, Gholz HL, Foken T (2007) On the effect of clearcuts on turbulence structure above a forest canopy. Theor Appl Climatol 88:133–137

    Google Scholar 

Download references

Acknowledgments

MA acknowledges financial support by the European Union (FP 5, 6, and 7), the Belgian Fonds de la recherche Scientifique (FNRS-FRS), the Belgian Federal Science Policy Office (BELSPO), and the Communauté française de Belgique (Action de Recherche Concertée).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Foken, T., Leuning, R., Oncley, S.R., Mauder, M., Aubinet, M. (2012). Corrections and Data Quality Control. In: Aubinet, M., Vesala, T., Papale, D. (eds) Eddy Covariance. Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2351-1_4

Download citation

Publish with us

Policies and ethics