Skip to main content

Technical Fixes Under Surveillance – CCS and Lessons Learned from the Governance of Long-Term Radioactive Waste Management

  • Chapter
  • First Online:

Part of the book series: Environment & Policy ((ENPO,volume 52))

Abstract

Carbon dioxide (CO2) capture and storage (CCS) is a technical option for avoiding higher CO2 concentrations in the Earth’s atmosphere while still using carbon-intensive technologies in power production and other industries. It highlights the tension between the advantage of a short-term ‘quick fix’ and the disadvantage posed by the risk of long-term leakage and, from a technology policy perspective, the danger of perpetuating carbon lock-in. This chapter assesses CCS against criteria taken from the controversial and long-lasting governance of radioactive waste. As the dimensions covered by this issue are manifold and intertwined, there is no ‘one’ methodology with which to analyse it (such as a technology assessment of the n-th order). Instead, cross-disciplinary investigations make it possible to draw lessons from contentious long-term environmental issues and social science research, which is necessary before embarking on this route on a large scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The long-term 2-degree target can only be reached at a climate sensitivity (CS) of 3°C, the most likely value according to the IPCC (Clarke et al., 2009, p. S67). CS denotes the global mean equilibrium temperature response to a doubling of CO2-eq concentrations. There is great uncertainty about the true value of CS.

  2. 2.

    See Royal Society (2009), Crabbe (2009), controversial comments, e.g., Schneider (2008), Schiermeier (2009), Victor, Morgan, Apt, Steinbruner, and Ricke (2009). In this context, geoengineering is the intentional large-scale modification of the Earth’s environment to combat climate change. CCS is a CO2 mitigation measure, ocean iron fertilisation an indirect CO2 one. An anti-warming technique is the enhancement of cloud reflectivity, such as seeding the stratosphere with sulphur aerosols (Pollard et al., 2009; with possible ozone damage: Tilmes, Müller, & Salawitch, 2008).

  3. 3.

    Other available and emerging capture techniques are listed in Plasynski et al. (2009, pp. 27–30).

  4. 4.

    http://unfccc.int/ghg_data/ghg_data_unfccc/items/4146.php. All web links accessed November 16, 2011.

  5. 5.

    Governance is more than management and denotes, according to a European White paper on the subject: ‘rules, processes and behaviour that affect the way in which powers are exercised … particularly as regards openness, participation, accountability, effectiveness and coherence’ (CEC, 2001).

  6. 6.

    http://www.ieaghg.org, based on 20 USD/t CO2 stored.

  7. 7.

    http://www.netl.doe.gov/technologies/carbon_seq/core_rd/storage.html

  8. 8.

    This goes far beyond the ‘life cycle of a CO2 storage project’ notion defined in IPCC (2005, p. 226) or the comparison of mere power plant characteristics (Hadjipaschalis, Kourtis, & Poullikkas, 2009; Mondol, McIlveen-Wright, Rezvani, Huang, & Hewitt, 2009).

  9. 9.

    http://www.co2captureandstorage.info/what_is_co2.php. Current CO2 capture rates range between 80 and 90 percent; techniques are foreseen that would make it possible to reach 98 percent (Gibbins & Chalmers, 2008).

  10. 10.

    http://www.endlager-asse.de/EN. Conventional salt mining from 1909 to 1964. From 1965, research laboratory under the auspices of the Federal Ministry for Scientific Research and Technology. From 1967 to 1978, trial emplacement, then final disposal of low- and intermediate-level radioactive waste into the abandoned cavities under the relatively weak Mining Law. In 2009, operations were transferred to the Federal Office of Radiation Protection under the Atomic Energy Act, which requires a decommissioning concept and a long-term performance assessment. It is planned to retrieve all waste and dispose of it at the dedicated and licensed Konrad facility.

  11. 11.

    According to the April 2011 draft for a German CCS act, an operator is permitted to request the transfer of responsibility 30 years after closure of a storage site at the earliest (BMU, 2011).

  12. 12.

    Apart from this, the electricity system integration is decisive, establishing which components are chosen and how effectively (see the exemplary combination given by Davison, 2009).

  13. 13.

    Adapted from Junker, Flüeler, Stauffacher, and Scholz (2008).

  14. 14.

    In a systematic assessment (e.g., as proposed by Boyd, 2008). See also Fischedick, Esken, Luhmann, Schüwer, and Supersberger (2007), Wilson and Gerard (2007), Wilson, Friedmann, and Pollak (2007), Wilson et al. (2008), Total (2008), Buesseler et al. (2008), Blackstock and Long (2010).

  15. 15.

    Such scenarios are apparently not being considered today, cf.: ‘Since the storage process is, in general, based on established oil and gas drilling technologies and practices, learning effects are expected to be relatively limited’ and, therefore, assumed storage costs level off at around EUR10/t CO2 (McKinsey, 2008, p. 24) or even half of that (Bellona, 2011, p. 34/38). See also van der Zwaan and Gerlagh (2009).

  16. 16.

    http://www.statoil.com (> Technology & Innovation > New energy > CO2 capture and storage > Sleipner West). See also OED (2007).

  17. 17.

    For an international database, see: http://www.co2captureandstorage.info/co2db.php, http://www.bellona.org/ccs/Artikler/ccs_web_sites

  18. 18.

    http://www.ghgt.info, http://www.ieaghg.org

  19. 19.

    Times, 21 Dec 2007; Economist, 5 Mar 2009.

  20. 20.

    For example, Curry (2004), Ramírez, Hoogwijk, Hendriks, and Faaij (2008b), Wuppertal Institut et al. (2008b), Sharp, Jaccard, and Keith (2009), de Coninck et al. (2009), Anderson (2009), Singleton, Herzog, and Ansolabehere (2009), Malone, Bradbury, and Dooley (2009), Wallquist, Visschers, and Siegrist (2009), de Best-Waldhober, Daamen, and Faaij (2009), Ashworth et al. (2009a, 2009b), Pisarski and Thambimuthu (2009), Ha-Duong, Nadai, and Campos (2009), Shackley et al. (2007, 2009), Terwel, Harinck, Ellemers, and Daamen (2009). Respective guidelines exist (e.g., Bellona Europe, 2009).

References

  • Aarnes, J. E., Selmer-Olsen, S., Carpenter, M. E., & Flach, T. A. (2008). Towards guidelines for selection, characterization and qualification of sites and projects for geological storage of CO2. Procedia, 1(1), 1735–1742.

    Article  Google Scholar 

  • Adams, D., & Davison, J. (2007). Capturing CO 2 . Cheltenham: IEA Greenhouse Gas R&D Programme.

    Google Scholar 

  • AkEnd. (2002). Selection procedure for repository sites. Recommendations of the AkEnd – Committee on a selection procedure for repository sites, AkEnd. December. Salzgitter: Federal Office for Radiation Protection, BfS. All web links accessed November 16, 2011, http://www.bmu.de

  • Anderson, J. (2009). Results from the project ‘Acceptance of CO2 capture and storage: Economics, policy and technology (ACCSEPT)’. Energy Procedia, 1, 4649–4653.

    Article  Google Scholar 

  • Archer, D. (2005). Fate of fossil fuel CO2 in geologic time. Journal of Geophysical Research, 110, C09S05, 1–6.

    Article  Google Scholar 

  • Ashworth, P., Carr-Cornish, S., Boughen, N., & Thambimuthu, K. (2009a). Engaging the public on carbon dioxide capture and storage: Does a large group process work? Energy Procedia, 1(1), 4765–4773.

    Article  Google Scholar 

  • Ashworth, P., Pisarski, A., & Thambimuthu, K. (2009b). Public acceptance of carbon dioxide capture and storage in a proposed demonstration area. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(3), 299–304.

    Article  Google Scholar 

  • Bachu, S. (2000). Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Conversion Management, 41, 953–970.

    Article  Google Scholar 

  • Beck, B. (2009, January). The technology and status of carbon dioxide capture and storage. IEA Greenhouse Gas R&D Programme (Presentation, City University, London).

    Google Scholar 

  • Bellona. (2011). Insuring energy independence. A CCS roadmap for Poland. Krakow: The Bellona Foundation.

    Google Scholar 

  • Bellona Europe. (2009). Guidelines for public consultation and participation in CCS projects. Brussels: Bellona.

    Google Scholar 

  • Benson, S. M. (2004, September). Monitoring protocols and life-cycle costs for geologic storage of carbon dioxide. Carbon Sequestration Leadership Forum, Melbourne, Australia.

    Google Scholar 

  • Benson, S. M. (2005). Lessons learned from industrial and natural analogs for health, safety and environmental risk assessment for geologic storage of carbon dioxide. In S. M. Benson, C. Oldenburg, M. Hoversten, & S. Imbus (Eds.), Carbon dioxide capture for storage in deep geologic formations – Results from the CO 2 capture project, Vol. 2 (pp. 1133–1141). Amsterdam: Elsevier.

    Google Scholar 

  • BFE, Bundesamt für Energie (Swiss Federal Office of Energy). (2008). Sectoral plan for deep geological repositories. Conceptual part. Bern: Bundesamt für Energie (BFE).

    Google Scholar 

  • Bijker, W. E., Hughes, T. P., & Pinch, T. (1989). The social construction of technological systems. New directions in the sociology and history of technology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Blackstock, J. J., & Long, J. C. S. (2010). The politics of geoengineering. Science, 327, 527.

    Article  Google Scholar 

  • Blowers, A., Lowry, D., & Solomon, B. D. (1991). The international politics of nuclear waste. New York: St. Martin’s Press.

    Google Scholar 

  • BMU, Bundesministerium für Umwelt. (2011). Gesetz zur Demonstration und Anwendung von Technologien zur Abscheidung, zum Transport und zur dauerhaften Speicherung von Kohlendioxid. Vom Bundeskabinett am 13. April 2011 beschlossen. Entwurf. Berlin: BMU, The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety.

    Google Scholar 

  • Bowden, A. R., & Rigg, A. (2005). Assessing reservoir performance risk in CO2 storage projects. In E. S. Rubin, D. W. Keith, & C. F. Gilboy (Eds.), Greenhouse gas control technologies, Vol. I (pp. 683–691). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Boyd, P. W. (2008). Ranking geo-engineering schemes. Nature Geoscience, 1, 722–724.

    Article  Google Scholar 

  • Bradshaw, J., Bachu, S., Bonijoly, D., Burruss, R., Holloway, S., Christensen, N. P., et al. (2007). CO2 storage capacity estimation: Issues and development of standards. International Journal of Greenhouse Gas Control, 1, 62–68.

    Article  Google Scholar 

  • Buesseler, K. O., et al. (2008). Ocean iron fertilization – moving forward in a sea of uncertainty. Science, 319, 162.

    Article  Google Scholar 

  • Carter, L. J. 1987. Nuclear imperatives and public trust: Dealing with radioactive waste. Washington, DC: Resources of the Future.

    Google Scholar 

  • CEC, Commission of the European Communities. (2001): European governance. A white paper. COM(2001) 428 final. 2001-7-25. Brussels: CEC.

    Google Scholar 

  • CEC. (2002). Amended proposals for council decisions concerning the specific programmes implementing the sixth framework programme of the European … Atomic Energy Community for research and training activities (2002–2006). COM(2002) 43 final. 30.1.2002. Brussels: CEC.

    Google Scholar 

  • Celia, M. A., Bachu, S., Nordbotten, J. M., Gasda, S. E., & Dahle, H. K. (2005). Quantitative estimation of CO2 leakage from geological storage: Analytical models, numerical models, and data needs. In: E. S. Rubin, D. W. Keith, & C. F. Gilboy (Eds.), Greenhouse gas control technologies, Vol. I (pp. 663–671). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Chalmers, H., Jakeman, N., Pearson, P., & Gibbins, J. (2009). Carbon capture and storage deployment in the UK: What next after the UK Government’s competition? Proceedings of the Institution of Mechanical Engineers; Part A; Journal of Power and Energy, 223(3), 305–319.

    Article  Google Scholar 

  • Clarke, L., Edmonds, J., Krey, V., Richels, R., Rose, S., & Tavoni, M. (2009). International climate policy architectures: overview of the EMF22 International Scenarios. Energy Economics, 31, S64–S81.

    Article  Google Scholar 

  • Colglazier, E. W. (1982). The politics of nuclear waste. New York: Pergamon.

    Google Scholar 

  • Collins, H. M. (1981). Stages in the empirical programme of relativism. Social Studies of Science, 11, 3–10.

    Article  Google Scholar 

  • CoRWM, Committee on Radioactive Waste Management. (w/o yr.). The options for long-term management of higher active solid radioactive wastes in the United Kingdom. TS 046, 12123/TR/0001.

    Google Scholar 

  • CoRWM. (2006). Managing our radioactive waste safely. CoRWM’s recommendations to Government. CoRWM Doc 700. London: CoRWM.

    Google Scholar 

  • Crabbe, M. J. C. (2009). Modelling effects of geoengineering options in response to climate change and global warming: Implications for coral reefs. Computational Biology and Chemistry, 33, 415–420.

    Article  Google Scholar 

  • CSLF, Carbon Sequestration Leadership Forum. (established in June 2003). http://www.cslforum.org/projects/index.html?cid=nav_projects

  • Curry, T. E. (2004). Public awareness of carbon capture and storage: A survey of attitudes toward climate change mitigation. Cambridge, MA: MIT.

    Google Scholar 

  • Dapeng, L., & Weiwei, W. (2009). Barriers and incentives of CCS deployment in China: Results from semi-structured interviews. Energy Policy, 37, 2421–2432.

    Article  Google Scholar 

  • Davison, J. (2009). Electricity systems with near-zero emissions of CO2 based on wind energy and coal gasification with CCS and hydrogen storage. International Journal of Greenhouse Gas Control, 3(6), 683–692.

    Article  Google Scholar 

  • de Best-Waldhober, M., Daamen, D., & Faaij, A. (2009). Informed and uninformed public opinions on CO2 capture and storage technologies in the Netherlands. International Journal of Greenhouse Gas Control, 3(3), 322–332.

    Article  Google Scholar 

  • de Coninck, H. (2008). Trojan horse or horn of plenty? Reflections on allowing CCS in the CDM. Energy Policy, 36, 929–936.

    Article  Google Scholar 

  • de Coninck, H., et al. (2009). The acceptability of CO2 capture and storage (CCS) in Europe: An assessment of the key determining factors. Part 1. Scientific, technical and economic dimensions. International Journal of Greenhouse Gas Control, 3, 333–343.

    Article  Google Scholar 

  • de Coninck, H., Stephens, J. C., & Metz, B. (2009). Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration. Energy Policy, 37(6), 2161–2165.

    Article  Google Scholar 

  • de Visser, E., de Vos, R., & Hendriks, Ch. (Eds.). (2008). CATO. Catching carbon to clear the skies. Experience and highlights of the Dutch R&D programme on CCS. The Hague: Dutch Ministry of Economic Affairs.

    Google Scholar 

  • Dixon, T. (2009). International legal and regulatory developments for carbon dioxide capture and storage: From the London convention to the clean development mechanism. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(3), 293–297.

    Article  Google Scholar 

  • Dooley, J. J., Dahowski, R. T., & Davidson, C. L. (2009). The potential for increased atmospheric CO2 emissions and accelerated consumption of deep geologic CO2 storage resources resulting from the large-scale deployment of a CCS-enabled unconventional fossil fuels industry in the U.S. International Journal of Greenhouse Gas Control, 3(6), 720–730.

    Article  Google Scholar 

  • EC, European Commission, European Parliament. (2009, January–February). Europeans’ attitudes towards climate change. Special Eurobarometer 313/Wave 71.1. Report. Brussels: Directorate-General for Communication.

    Google Scholar 

  • EU CO2 Network, European Carbon Dioxide Network. (2004). Capturing and storing carbon dioxide: Technical lessons learned. http://www.co2net.eu

  • Feroz, E. H., Raab, R. L., Ulleberg, G. T., & Alsharif, K. (2009). Global warming and environmental production efficiency ranking of the Kyoto Protocol nations. Journal of Environmental Management, 90(2), 1178–1183.

    Article  Google Scholar 

  • Fischedick, M., Esken, A., Luhmann, H.-J., Schüwer, D., & Supersberger, N. (2007). Geologische CO 2 -Speicherung als klimapolitische Handlungsoption. Technologien, Konzepte, Perspektiven. Wuppertal Spezial 25. Wuppertal: Wuppertal Institut.

    Google Scholar 

  • Flüeler, T. (2005). Long-term knowledge generation and transfer in environmental issues – A challenge to a knowledge-based society. Setting the scene. In J. V. Carrasquero, F. Welsch, A. Oropeza, T. Flüeler, & N. Callaos (Eds.), Proceedings PISTA 2005. The 3rd International Conference on Politics and Information Systems: Technologies and Applications. July 14–17, 2005, Orlando, Florida. Orlando, FA: International Institute of Informatics and Systemics, IIIS Copyright Manager:ii.

    Google Scholar 

  • Flüeler, T. (2006) Decision making for complex socio-technical systems. Robustness from lessons learned in long-term radioactive waste governance. Vol. 42 Series Environment & Policy. Dordrecht: Springer.

    Google Scholar 

  • Freudenburg, W. R. (2004). Can we learn from failure? Examining US experiences with nuclear repository siting. Journal of Risk Research, 7(2), 153–169.

    Article  Google Scholar 

  • Friedmann, S. J., Dooley, J. J., Held, H., & Edenhofer, O. (2006). The low cost of geological assessment for underground CO2 storage: Policy and economic implications. Energy Conversion and Management, 47, 1894–1901.

    Article  Google Scholar 

  • Gale, J. (2007). To store or not to store? International Journal of Greenhouse Gas Control, 1(1), 1.

    Article  Google Scholar 

  • Gale, J., & Read, T. (2005). Rules and standards for CO2 capture and storage: Considering the options. In M. Wilson, et al. (Eds.), Greenhouse gas control technologies, Volume II (pp. 1461–1466). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Garg, A., & Shukla, P. R. (2009). Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS). Energy, 34(8), 1032–1041.

    Article  Google Scholar 

  • Gerard, D., & Wilson, E. J. (2009). Environmental bonds and the challenge of long-term carbon sequestration. Journal of Environmental Management, 90(2), 1097–1105.

    Article  Google Scholar 

  • Gibbins, J., & Chalmers, H. (2008). Carbon capture and storage. Energy Policy, 36(12), 4317–4322.

    Article  Google Scholar 

  • Goldstein, G., & Tosato, G. C. (2008). Global energy systems and common analyses. Final report of Annex X (2005–2008). International energy agency implementing agreement for a programme of energy technology systems analysis, ETSAP. Paris: IEA/OECD/ETSAP.

    Google Scholar 

  • Gough, C., Shackley, S., Holloway, S., Cockerill, T. T., Bentham, M., Bulatov, I., et al. (2006). An integrated assessment of carbon dioxide capture and storage in the UK. Monograph. London: University College.

    Google Scholar 

  • Gough, C., & Shackley, S. (2006). Towards a multi-criteria methodology for assessment of geological carbon storage options. Climatic Change, 74(1–3), 141–174.

    Article  Google Scholar 

  • Grünwald, R. (2008). Treibhausgas – ab in die Versenkung? Möglichkeiten und Risiken der Abscheidung und Lagerung von CO 2 . Studien des Büros für Technikfolgen-Abschätzung beim Deutschen Bundestag. Global zukunftsfähige Entwicklung, Bd. 25. Berlin: Edition Sigma.

    Google Scholar 

  • Hadjipaschalis, I., Kourtis, G., & Poullikkas, A. (2009). Assessment of oxyfuel power generation technologies. Renewable and Sustainable Energy Reviews, 13(9), 2637–2644.

    Article  Google Scholar 

  • Ha-Duong, M., & Loisel, R. (2009). Zero is the only acceptable leakage rate for geologically stored CO2: An editorial comment. Climate Change, 93(3–4), 311–317.

    Article  Google Scholar 

  • Ha-Duong, M., Nadai, A., & Campos, A. S. (2009). A survey on the public perception of CCS in France. International Journal of Greenhouse Gas Control, 3(5), 633–640.

    Article  Google Scholar 

  • Haefeli, S., Bosi, M., & Philibert, C. (2005). Important accounting issues for carbon dioxide capture and storage projects under the UNFCCC. In E. S. Rubin, D. W. Keith, & C. F. Gilboy (Eds.), Greenhouse gas control technologies, Vol. I (pp. 953–960). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Hawkins, D. G. (2003). Passing gas: Policy implications of leakage from geologic carbon storage sites. In J. Gale & Y. Kaya (Eds.), Greenhouse gas control technologies. Proceedings of the 6th international conference, Kyoto, Japan (pp. 249–254). Amsterdam: Pergamon.

    Chapter  Google Scholar 

  • IAEA, International Atomic Energy Agency. (1998, June). Technical, institutional and economic factors important for developing a multinational radioactive waste repository. TECDOC-1021. Vienna: IAEA.

    Google Scholar 

  • IAEA. (1999). Topical issues in nuclear, radiation and radioactive waste safety. Proceedings of an international conference. Vienna, 31 Aug–4 Sep 1998 (pp. 233–255). Vienna: IAEA.

    Google Scholar 

  • IAEA. (2003). Scientific and technical basis for the geological disposal of radioactive wastes. Technical Reports Series. No. 413. Vienna: IAEA.

    Google Scholar 

  • IAEA. (2004, October). Developing multinational radioactive waste repositories: Infrastructural framework and scenarios of cooperation. TECDOC-1413. Vienna: IAEA.

    Google Scholar 

  • IAEA. (2006). Safety standards. Geological disposal of radioactive waste. Safety Requirements. No. WS-R-4. Vienna: IAEA.

    Google Scholar 

  • ICRP, International Commission on Radiological Protection. (1993). Protection from potential exposure: A conceptual framework. ICRP-Publication 64. Annals of the ICRP, 23(1), Paris: ICRP.

    Google Scholar 

  • IEA, International Energy Agency. (2007). Storing CO 2 underground. International energy agency greenhouse gas R&D programme 2007. Cheltenham: IEA.

    Google Scholar 

  • IEA. (2008a). Energy technology perspectives 2008. Scenarios and strategies to 2050. Executive summary. Paris: OECD/IEA.

    Google Scholar 

  • IEA. (2008b). CO 2 capture and storage: A key abatement option. Paris: OECD/IEA.

    Google Scholar 

  • IEA. (2009a, 8 July). Carbon capture and storage. Full-scale demonstration progress update. Paris: OECD/IEA.

    Google Scholar 

  • IEA. (2009b). IEA statistics. CO 2 emissions from fuel combustion. Highlights. Paris: OECD/IEA.

    Google Scholar 

  • IEA. (2009c). World energy outlook 2009. Summary. Paris: OECD/IEA.

    Google Scholar 

  • IEA. (2009d). Technology roadmap. Carbon capture and storage. Paris: OECD/IEA.

    Google Scholar 

  • IOP, Institute of Physics, Royal Society of Chemistry, Institute of Biology. (2008). Carbon capture and storage. Seminar, December 5, 2007. London: IOP.

    Google Scholar 

  • IPCC, Intergovernmental Panel on Climate Change. (2005). IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III [B. Metz, O. Davidson, H. C. de Coninck, M. Loos & L. A. Meyer (Eds.)]. Cambridge: Cambridge University Press.

    Google Scholar 

  • IRGC, International Risk Governance Council. (2007). Workshop on regulation of carbon capture and storage. March 15 and 16. Geneva: IRGC.

    Google Scholar 

  • IRGC. (2008). Regulation of carbon capture and storage. Policy Brief. Geneva: IRGC.

    Google Scholar 

  • Jacobs, W., Cohen, L., Kostakidis, L., & Rundell, S. (2009). Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration. Discussion paper 2009-04. Cambridge, MA: Belfer Center for Science and International Affairs.

    Book  Google Scholar 

  • Jacobson, M. Z. (2009). Review of solutions to global warming, air pollution, and energy security. Energy and Environmental Sciences, 2, 148–173.

    Article  Google Scholar 

  • Junker, B., Flüeler, T., Stauffacher, M., & Scholz, R. W. (2008). Description of the safety case for long-term disposal of radioactive waste – the iterative safety analysis approach as utilized in Switzerland. Technical paper as part of the ‘Long-term dimension of radioactive waste disposal: The role of the time dimension for risk perception’ project. Natural and Social Science Interface (NSSI). Zurich: ETH Zurich.

    Google Scholar 

  • Kasperson, R. E. (Ed.). (1983). Equity issues in radioactive waste management. Cambridge: Oelgeschlager, Gunn & Hain.

    Google Scholar 

  • Kasperson, R. E., Golding, D., & Tuler, S. (1992). Social distrust as a factor in siting hazardous facilities and communicating risks. Social Issues, 48(4), 161–187.

    Article  Google Scholar 

  • Kelemen, P. B., & Matter, J. (2008). In situ carbonation of peridotite for CO2 storage. PNAS, 105(45), 17295–17300.

    Article  Google Scholar 

  • Koornneef, J., van Harmelen, T., van Horssen, A., van Gijlswijk, R., Ramírez, A., Faaij, A., Turkenburg, W. (2008). The impacts of CO2 capture on transboundary air pollution in the Netherlands. GHGT-9. Energy Procedia, 1, 3787–3794.

    Article  Google Scholar 

  • Krey, V., & Riahi, K. (2009). Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets – Greenhouse gas mitigation scenarios for the 21st century. Energy Economics, 31, Suppl. 2, International, U.S. and E.U. climate change control scenarios: Results from EMF 22, December 2009, S94–S106.

    Google Scholar 

  • Latour, B. (1987). Science in action. How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • LDC, London Dumping Convention. (1972). Convention on the prevention of marine pollution by dumping of wastes and other matter. http://www.londonprotocol.imo.org

  • Liang, X., Reiner, D., Gibbins, J., & Li, J. (2009). Assessing the value of CO2 capture ready in new-build pulverised coal-fired power plants in China. International Journal of Greenhouse Gas Control, 3(6), 787–792.

    Article  Google Scholar 

  • Liu, H., & Sims Gallagher, K. (2010). Catalyzing strategic transformation to a low-carbon economy: A CCS roadmap for China. Energy Policy, 38(1), 59–74.

    Article  Google Scholar 

  • Mace, M. J., Hendricks, C., & Coenraads, R. (2007). Regulatory challenges to the implementation of carbon capture and geological storage within the European Union under EU and international law. International Journal of Greenhouse Gas Control, 1, 253–260.

    Article  Google Scholar 

  • Malone, E. L., Bradbury, J. A., & Dooley, J. J. (2009). Keeping CCS stakeholder involvement in perspective. Energy Procedia, 1(1), Greenhouse Gas Control Technologies 9, Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), 4789–4794.

    Article  Google Scholar 

  • Maul, P. R., Metcalfe, R., Pearce, J., Savage, D., & West, J. M. (2007). Performance assessments for the geological storage of carbon dioxide: Learning from the radioactive waste disposal experience. International Journal of Greenhouse Gas Control, 1(4), 444–455.

    Article  Google Scholar 

  • McKinsey. (2008). Carbon capture and storage. Assessing the economics. McKinsey & Company. http://www.mckinsey.com (use search function)

  • McKinsey. (2009). Pathways to a low-carbon economy. Version 2 of the global greenhouse has abatement cost curve. McKinsey & Company. http://www.mckinsey.com (use search function)

  • Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., et al. (2009). Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458, 1158–1162.

    Article  Google Scholar 

  • Mondol, J. D., McIlveen-Wright, D., Rezvani, S., Huang, Y., & Hewitt, N. (2009). Techno-economic evaluation of advanced IGCC lignite coal fuelled power plants with CO2 capture. Fuel, 88(12), 2495–2506.

    Article  Google Scholar 

  • Morone, J. G., & Woodhouse, E. J. (1986). Averting catastrophe. Strategies for regulating risky technologies. Berkeley: University of California Press.

    Google Scholar 

  • Nagra. (1994). Bericht zur Langzeitsicherheit des Endlagers SMA am Standort Wellenberg (Gemeinde Wolfenschiessen, NW). Nagra Technical Report NTB 94-06. Wettingen, Switzerland: Nagra.

    Google Scholar 

  • Nagra. (2002). Project Opalinuston – Safety report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis). Nagra Technical Report NTB 02-05. Wettingen, Switzerland: Nagra.

    Google Scholar 

  • Nagra. (2008). Modellhaftes Inventar für radioaktive Materialien MIRAM 08. NTB 08-06. Wettingen: Nagra.

    Google Scholar 

  • NEA, Nuclear Energy Agency. (1999). Confidence in the long-term safety of deep geological repositories: Its development and communication. Paris: OECD.

    Google Scholar 

  • NEA. (2000). Nuclear energy in a sustainable development perspective. Paris: OECD.

    Google Scholar 

  • NEA. (2004a). Stepwise approach to decision making for long-term radioactive waste management. No. 4429. Paris: OECD.

    Google Scholar 

  • NEA. (2004b). Safety of disposal of spent fuel, HLW and long-lived ILW in Switzerland. An international peer review of the post-closure radiological safety assessment for disposal in the Opalinus Clay of the Zürcher Weinland. No. 5568. Paris: OECD.

    Google Scholar 

  • NEA. (2008a). Moving forward with geologic disposal of radioactive waste. A collective statement. Paris: OECD.

    Google Scholar 

  • NEA. (2008b). Safety cases for deep geological disposal of radioactive waste: Where do we stand? Symposium proceedings. Paris, France. January 23–25, 2007. NEA No. 6319. Paris: OECD.

    Google Scholar 

  • NEA. (2008c). Moving forward with geological disposal of radioactive waste: An NEA RWMC collective statement. NEA/RWM(2008)5/Rev2. Paris: OECD.

    Google Scholar 

  • NEA. (2009). Considering timescales in the post-closure safety of geological disposal of radioactive waste. Paris: OECD.

    Google Scholar 

  • NEA/IAEA/CEC. (1991). Disposal of radioactive waste: Can long-term safety be evaluated? An international collective opinion. Paris: OECD.

    Google Scholar 

  • North, D. W. (1999). A perspective on nuclear waste. Risk Analysis, 19(4), 751–758.

    Google Scholar 

  • NWMO, Nuclear Waste Management Organization. (2003, November). Asking the right questions? The future management of Canada’s used nuclear fuel. Toronto: NWMO (papers and extensive discussion on http://www.nwmo.ca)

    Google Scholar 

  • OED, Norwegian Ministry of Petroleum and Energy. (2007). Fact sheet: Carbon capture and geological storage. http://www.regjeringen.no/en/dep/oed.html (>Press centre>Facts and background)

  • Ormerod, W. G., Freund, P., & Smith, A. (2002). Ocean storage of CO 2 . Cheltenham: IEA Greenhouse Gas R&D Programme.

    Google Scholar 

  • OSPAR. (2007). Decision 2007/1 to prohibit the storage of carbon dioxide streams in the water column or on the sea-bed. http://www.ospar.org (>Work areas>Offshore Oil & Gas Industry>Decisions ....)

  • Pacala, S., & Socolow, R. (2004, August 13). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305(5686), 968–972.

    Article  Google Scholar 

  • Pachauri, R. K., & Reisinger, A. (Eds.). (2007). Climate change 2007: Synthesis report. Cambridge: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Page, S. C., Williamson, A. G., & Mason, I. G. (2009). Carbon capture and storage: Fundamental thermodynamics and current technology. Energy Policy, 37(9), 3314–3324.

    Article  Google Scholar 

  • Peña, N., & Rubin, E. S. (2008). A trust fund approach to accelerating deployment of CCS: Options and considerations. Coal Initiative Reports. White Paper Series. Arlington, VA: Pew Center.

    Google Scholar 

  • Pew Center. (2007). A program to accelerate the deployment of CO 2 capture and storage (CCS): Rationale, objectives, and costs. Coal Initiative Reports. White Paper Series. Arlington, VA: Pew Center.

    Google Scholar 

  • Plasynski, S. I., Litynski, J. T., McIlvried, H. G., & Srivastava, R. D. (2009). Progress and new developments in carbon capture and storage. Critical Reviews in Plant Sciences, 28(3), 123–138.

    Article  Google Scholar 

  • Pollak, M., & Wilson, E. J. (2009). Risk governance for geological storage of CO2 under the Clean Development Mechanism. Climate Policy, 9(1), 71–87.

    Article  Google Scholar 

  • Pollard, R. T., Salter, I., Sanders, R. J., Lucas, M. I., Moore, C. M., Mills, R. A., et al. (2009). Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature, 457, 577–580.

    Article  Google Scholar 

  • Powicki, C. R. (2007). Closing the carbon cycle. EPRI Journal. Spring 2007. Palo Alto, CA: Electric Power Research Institute (EPRI).

    Google Scholar 

  • Praetorius, B., & Schumacher, K. (2009). Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage. Energy Policy, 37(12), 5081–5093.

    Article  Google Scholar 

  • Ramírez, A., Hagedoorn, S., Kramers, L., Wildenborg, T., & Hendriks, C. (2008a). Screening CO2 storage options in the Netherlands. Energy Procedia, 1(1), 2801–2808.

    Google Scholar 

  • Ramírez, A., Hoogwijk, M., Hendriks, C., & Faaij, A. (2008b). Using a participatory approach to develop a sustainability framework for carbon capture and storage systems in The Netherlands. International Journal of Greenhouse Gas Control, 2(1), 136–156.

    Article  Google Scholar 

  • Ravetz, J. R. (1980). Public perceptions of acceptable risks as evidence for their cognitive, technical and social structure. In M. Dierkes, S. Edward, & R. Coppock (Eds.), Technological risk. Its perception and handling in the European Community (pp. 45–54). Königstein: Oelgeschlager, Gunn & Hain.

    Google Scholar 

  • Richardson, K., Steffen, W., Schellnhuber, H. J., Alcamo, J., Barker, T., Kammen, D. M., et al. (2009). Synthesis report. Climate change. Global risks, challenges & decisions. Copenhagen, March 10–12, 2009. International Alliance of Research Universities. Copenhagen: University of Copenhagen.

    Google Scholar 

  • Rohner, H. (2008, September 8–10). CO 2 storage – back to where it belongs. Paper presented at smart energy strategies. Meeting the climate change challenge. ETH Zurich.

    Google Scholar 

  • Ropohl, G. (1978/1999). Allgemeine Technologie. Eine Systemtheorie der Technik. München: Carl Hanser Verlag.

    Google Scholar 

  • Royal Society. (2009). Geoengineering the climate: Science, governance and uncertainty. London: The Royal Society.

    Google Scholar 

  • Savage, D., Maul, P. R., Benbow, S. J., & Walke, R. C. (2004). A generic FEP database for the assessment of long-term performance and safety of geological storage of CO2. Version 1.0. Henley-on-Thames, Oxfordshire: Quintessa.

    Google Scholar 

  • Schiermeier, Q. (2009). Ocean fertilization: Dead in the water? Nature, 457, 520–521.

    Article  Google Scholar 

  • Schneider, S. H. (2008). Geoengineering: Could we or should we make it work? Philosophical Transactions of the Royal Society, A. doi:10.1098/rsta.2008.0145

    Google Scholar 

  • Seifritz, W. (1990). CO2 disposal by means of silicates. Nature, 345, 486.

    Article  Google Scholar 

  • Shackley, S., Waterman, H., Godfroij, P., Reiner, D., Anderson, J., Draxlbauer, K., et al. (2007). Stakeholder perceptions of CO 2 capture and storage in Europe: Results from the EU-funded ACCSEPT Survey. Deliverable D3.1 from ACCSEPT – Main Report. Manchester: Manchester Business School, University of Manchester.

    Google Scholar 

  • Shackley, S., & Verma, P. (2008). Tackling CO2 reduction in India through use of CO2 capture and storage (CCS). Prospects and challenges. Energy Policy, 36, 3554–3561.

    Article  Google Scholar 

  • Shackley, S., Reiner, D., Upham, P., de Coninck, H., Sigurthorsson, G., & Anderson, J. (2009). The acceptability of CO2 capture and storage (CCS) in Europe: An assessment of the key determining factors: Part 2. The social acceptability of CCS and the wider impacts and repercussions of its implementation. International Journal of Greenhouse Gas Control, 3(3), 344–356.

    Article  Google Scholar 

  • Sharp, J. D., Jaccard, M. K., & Keith, D. W. (2009). Anticipating public attitudes toward underground CO2 storage. International Journal of Greenhouse Gas Control, 3, 641–651.

    Article  Google Scholar 

  • Singleton, G., Herzog, H., & Ansolabehere, S. (2009). Public risk perspectives on the geologic storage of carbon dioxide. International Journal of Greenhouse Gas Control, 3(1), 100–107.

    Article  Google Scholar 

  • Solomon, S., Plattner, G.-K., Knutti, R., & Friedlingstein, P. (2009, February 10). Irreversible climate change due to carbon dioxide emissions. PNAS, 106(6), 1704–1709 (incl. supporting information: pnas.0812721106).

    Article  Google Scholar 

  • Spreng, D., Marland, G., & Weinberg, A. M. (2007). CO2 capture and storage: Another Faustian Bargain? Energy Policy, 35, 850–854.

    Article  Google Scholar 

  • Steeneveldt, R., Berger, B., & Torp, T. A. (2006). CO2 capture and storage: Closing the knowing-doing gap. Chemical Engineering Research and Design, 84(9), 739–763.

    Article  Google Scholar 

  • Stenhouse, M. J., Galeb, J., & Zhou, W. (2009). Current status of risk assessment and regulatory frameworks for geological CO2 storage. GHGT-9. Energy Procedia, 1, 2455–2462.

    Article  Google Scholar 

  • Stern, N. (2007). The economics of climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Stucki, S., Schuler, A., & Constantinescu, M. (1995). Coupled CO2 recovery from the atmosphere and water electrolysis: Feasibility of a new process for hydrogen storage. International Journal of Hydrogen Energy, 20, 653–663.

    Article  Google Scholar 

  • Terwel, B. W., Harinck, F., Ellemers, N., & Daamen, D. D. L. (2009). Competence-based and integrity-based trust as predictors of acceptance of carbon dioxide capture and storage (CCS). Risk Analysis, 29(8), 1129–1140.

    Article  Google Scholar 

  • Tilmes, S., Müller, R., & Salawitch, R. (2008). The sensitivity of Polar ozone depletion to proposed geoengineering schemes. Science, 320, 1201–1204.

    Article  Google Scholar 

  • Total. (2008). Results of stakeholder consultation. Lacq Basin CO 2 capture and storage pilot project. http://www.total.com/MEDIAS/MEDIAS_INFOS/2186/EN/results-stakeholder-consultation.pdf

  • Toth, F. L. (Ed.). (2011). Geological disposal of carbon dioxide and radioactive waste: A comparative assessment. Series Advances in Global Change Research, 44. Dordrecht: Springer.

    Google Scholar 

  • Unruh, G. C. (2000). Understanding carbon lock-in. Energy Policy, 28, 817–830.

    Article  Google Scholar 

  • US EIA, Energy Information Administration. (2009). Emissions of greenhouse gases report. http://www.eia.gov/oiaf/1605/ggrpt/carbon.html#total

  • Vallentin, D. (2007). Inducing the international diffusion of carbon capture and storage technologies in the power sector. Wuppertal Papers n. 162. Wuppertal: Wuppertal Institute.

    Google Scholar 

  • Van Alphen, K., Hekkert, M. P., & Turkenburg, W. C. (2009). Comparing the development and deployment of Carbon Capture and Storage technologies in Norway, the Netherlands, Australia, Canada and the United States – An innovation system perspective. Energy Procedia, 1, 4591–4599.

    Article  Google Scholar 

  • van der Zwaan, B., & Gerlagh, R. (2009). Economics of geological CO2 storage and leakage. Climate Change, 93(3–4), 285–309.

    Article  Google Scholar 

  • van Vuuren, D. P., den Elzen, M. G. J., Lucas, P. L., Eickhout, B., Strengers, B. J., van Ruijven, B., et al. (2007). Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change, 81, 119–159.

    Article  Google Scholar 

  • Victor, D. G., Morgan, M. G., Apt, F., Steinbruner, J., & Ricke, K. (2009). The geoengineering option – A last resort against global warming. Foreign Affairs, 88(March/April), 64.

    Google Scholar 

  • Viebahn, P., Nitsch, J., Fischedick, M., Esken, A., Schüwer, D., Supersberger, N., et al. (2007). Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany. International Journal of Greenhouse Gas Control, 1(1), 121–133.

    Article  Google Scholar 

  • Vlek, C., & Stallén, P.-J. (1980). Rational and personal aspects of risk. Acta Psychologica, 45, 273–300.

    Article  Google Scholar 

  • Wallquist, L., Visschers, V. H. M., & Siegrist, M. (2009). Lay concepts on CCS deployment in Switzerland based on qualitative interviews. International Journal of Greenhouse Gas Control, 3(5), 652–657.

    Article  Google Scholar 

  • Weinberg, A. M. (1972, July 7). Social institutions and nuclear energy. Science, 177, 27–34.

    Article  Google Scholar 

  • Wilson, E., & Gerard, D. (Eds.). (2007). Carbon capture and sequestration: Integrating technology, monitoring, regulation. Ames, IA: Blackwell Publishing Professional.

    Google Scholar 

  • Wilson, E., et al. (2008, April 15). Regulating the geological sequestration of CO2. Environmental Science & Technology, 42, 2718–2722.

    Article  Google Scholar 

  • Wilson, E. J., Friedmann, S. J., & Pollak, M. F. (2007). Research for deployment: Incorporating risk, regulation, and liability for carbon capture and sequestration. Environment, Science & Technology, 41, 5945–5952.

    Article  Google Scholar 

  • WRI, World Resource Institute. (2008). CCS guidelines. Guidelines for carbon dioxide capture, transport and storage. Washington, DC: WRI.

    Google Scholar 

  • Wuppertal Institute, DLR, ZSW, PIK. (2008a). RECCS. Ecological, economic and structural comparison of renewable energy technologies (RE) with carbon capture and storage (CCS). An integrated approach. Published by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety BMU. Wuppertal: Wuppertal Institute.

    Google Scholar 

  • Wuppertal Institut, et al. (2008b). Sozioökonomische Begleitforschung zur gesellschaftlichen Akzeptanz von Carbon Capture and Storage (CCS) auf nationaler und internationaler Ebene. Wuppertal: Wuppertal Institute.

    Google Scholar 

  • Wynne, B. (1983). Technologie, Risiko und Partizipation: Zum gesellschaftlichen Umgang mit Unsicherheit. In J. Conrad (Ed.). Gesellschaft, Technik und Risikopolitik (pp. 156–187). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Flüeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Flüeler, T. (2012). Technical Fixes Under Surveillance – CCS and Lessons Learned from the Governance of Long-Term Radioactive Waste Management. In: Spreng, D., Flüeler, T., Goldblatt, D., Minsch, J. (eds) Tackling Long-Term Global Energy Problems. Environment & Policy, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2333-7_10

Download citation

Publish with us

Policies and ethics