One-Shot Optimization—The VRFT Method

  • Alexandre Sanfelice Bazanella
  • Lucíola Campestrini
  • Diego Eckhard
Part of the Communications and Control Engineering book series (CCE)

Abstract

Once the designer has chosen the performance criterion, it must be minimized, which in a data-driven control design will be done using only input-output data collected from the system. It is possible in many situations to perform this minimization in only “one-shot”, that is, with only one batch of data collected in only one operating condition. These “one-shot” solutions, which are the most convenient, are the subject of Chap. 3. The virtual reference feedback tuning method (VRFT, for short) is presented and its statistical properties—consistency, variance—are demonstrated. Its extension to nonminimum phase processes is also presented. A number of simulation studies illustrate the properties of VRFT.

Keywords

Reference Model Instrumental Variable Controller Parameter Ideal Controller Reference Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.J. Åström, B. Wittenmark, Adaptive Control, 2nd edn. (Addison-Wesley, Reading, 1995) MATHGoogle Scholar
  2. 2.
    R.R. Bitmead, S. Cheong, System identification based instability detection of noisy ARMA systems, in Proc. 15th IFAC Symposium on System Identification, Saint-Malo, France (IFAC, 2009), pp. 290–295 Google Scholar
  3. 3.
    L. Campestrini, D. Eckhard, M. Gevers, A.S. Bazanella, Virtual reference feedback tuning for non-minimum phase plants. Automatica 47, 1778–1784 (2011) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    M.C. Campi, A. Lecchini, S. Savaresi, An application of the virtual reference feedback tuning method to a benchmark problem. Eur. J. Control 9, 66–76 (2003) CrossRefGoogle Scholar
  5. 5.
    M.C. Campi, A. Lecchini, S.M. Savaresi, Virtual reference feedback tuning: A direct method for the design of feedback controllers. Automatica 38, 1337–1346 (2002) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    M.C. Campi, S.M. Savaresi, Direct nonlinear control design: The virtual reference feedback tuning (VRFT) approach. Automatica 51, 14–27 (2006) MathSciNetGoogle Scholar
  7. 7.
    M. Gevers, A.S. Bazanella, X. Bombois, L. Mišković, Identification and the information matrix: How to get just sufficiently rich? IEEE Trans. Autom. Control 54(12), 2828–2840 (2009) CrossRefGoogle Scholar
  8. 8.
    G. Goodwin, K.S. Sin, Adaptive Filtering, Prediction and Control (Prentice Hall International, Englewood Cliffs, 2009) MATHGoogle Scholar
  9. 9.
    H. Hjalmarsson, M. Gevers, S. Gunnarsson, O. Lequin, Iterative feedback tuning: Theory and applications. IEEE Control Syst. Mag. 18(4), 26–41 (1998) CrossRefGoogle Scholar
  10. 10.
    A. Karimi, K. van Heusden, D. Bonvin, Non-iterative data-driven controller tuning using the correlation approach, in Proc. European Control Conference, Kos, Greece, 2007 Google Scholar
  11. 11.
    A. Lecchini, M. Gevers, On iterative feedback tuning for non-minimum phase plants, in 41st IEEE Conference on Decision and Control, 2002, pp. 4658–4663 Google Scholar
  12. 12.
    L. Ljung, System Identification—Theory for the User, 2nd edn. (Prentice Hall, New York, 1999) Google Scholar
  13. 13.
    J. Mårtensson, Geometric Analysis of Stochastic Model Errors in System Identification, PhD thesis, Royal Institute of Technology (KTH), October 2007 Google Scholar
  14. 14.
    J. Mårtensson, H. Hjalmarsson, Variance error quantifications for identified poles and zeros. Automatica 45(11), 2512–2525 (2009) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    M. Nakamoto, An application of the virtual reference feedback tuning for an MIMO process, in Proc. SICE Annual Conference, Sapporo, Japan, vol. 3 (IEEE Press, New York, 2005), pp. 2208–2213 Google Scholar
  16. 16.
    A. Sala, A. Esparza, Extensions to “virtual reference feedback tuning: A direct method for the design of feedback controllers”. Automatica 41, 1473–1476 (2005) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    T. Söderström, P. Stoica, System Identification (Prentice Hall, New York, 1989) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alexandre Sanfelice Bazanella
    • 1
  • Lucíola Campestrini
    • 1
  • Diego Eckhard
    • 1
  1. 1.Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations