Advertisement

Aqueous Phase Chemistry

  • Peter Warneck
  • Jonathan Williams
Chapter

Abstract

Comments: Densities for super-cooled water in the temperature range 0 >T> −34°C are smoothed data from Hare and Sorensen (1987) who fitted their measurements by a sixth order polynomial:
$$ \begin{array}{c}{r}_{\rm{ice}}\left[\rm{g}\rm{\rm{cm}}^{-3}\right]=0.99986+6.69\times {10}^{-5}T+8.486\times {10}^{-6}{T}^{2}+1.518\times {10}^{-7}{T}^{3}\\ -6.9484\times {10}^{-9}{T}^{4}-3.6449\times {10}^{-10}{T}^{5}-7.497\times {10}^{-12}{T}^{6}\left(T\rm{in °C}\right)\end{array}$$

Keywords

Aerosol Particle Number Concentration Water Drop Cumulus Cloud Cloud Drop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

8.1 Physicochemical Properties of Water

Table 8.1

Physicochemical quantities for pure watera

Molar mass (kg mol−1)

M w

1.80153 × 10−2

Density of water (kg m−3)

ρ w

999.84

Maximum density (kg m−3)

ρ w max

999.97 (4.0°C)

Triple point density (kg m−3)

ρ w trp

999.78 (0.01°C)

Density of ice (kg m−3)

ρ i

916.4

Melting temperature (°C)

T m

0.00 (1013.25 hPa)

Specific heat, water vapor (J kg−1 K−1)

cp (constant pressure)

1,850

cv (constant volume)

1,319

Specific heat, liquid water (J kg−1 K−1)

c w

4217.6

Specific heat of ice (J kg−1 K−1)

c w

2,110

Latent heat of evaporation (J kg−1)

L e

2.501 × 106

Latent heat of sublimation (J kg−1)

L s

2.834 × 106

Saturation vapor pressure (hPa)

e sat

6.113

Triple point vapor pressure (hPa)

e trp

6.1173

Thermal conductivity (mW K−1 m−1)

κ T

561.0

Viscosity (mPa s)

μ

1.793

Dielectric constant, waterb

ε r

87.90

Dielectric constant, iceb

ε r

91.6

Electrical conductance (μS cm−1)

λ

0.0115

Surface tension (mN m−1)

σ

75.64

aAll quantities except mass are temperature-dependent (see the following tables). Numerical values refer to T = 273.15 K and p = 1.0 × 105 Pa (1 bar) except where indicated

bThe dielectric constant is defined as the relative permittivity εr = ε/ε0, where ε is the permittivity of water or ice and ε0 is the permittivity of vacuum

Table 8.2

Density of liquid water and of ice (kg m−3) as a function of temperature (°C)a

 

Water

Ice

−34

977.5

 4

999.97

0

916.4

−32

980.9

 6

999.94

−10

917.5

−30

983.9

 8

999.85

−20

918.6

−28

986.4

10

999.70

−30

919.7

−26

988.6

12

999.50

−40

920.8

−24

990.4

14

999.25

−50

921.9

−22

992.1

16

998.95

−60

923.0

−20

993.5

18

998.60

−70

924.1

−18

994.7

20

998.21

−80

925.2

−16

995.8

22

997.77

−90

926.3

−14

996.7

24

997.30

−100

917.5

−12

997.5

26

996.79

−110

928.5

−10

998.2

28

996.24

−120

929.6

−8

998.7

30

995.65

−130

930.7

−6

999.1

32

995.03

−140

931.8

−4

999.4

34

994.38

  

−2

999.7

36

993.69

−200

 

0

999.84

38

992.97

Average 933.1

2

999.94

40

992.22

−260

aSources: Super-cooled water, Hare and Sorensen (1987); water above 0°C, Laube and Höller (1988), see also Linstrom and Mallard (2005); ice, Hobbs (1974); see comments

Comments: Densities for super-cooled water in the temperature range 0 >T> −34°C are smoothed data from Hare and Sorensen (1987) who fitted their measurements by a sixth order polynomial:
$$ \begin{array}{c}{r}_{\rm{ice}}\left[\rm{g}\rm{\rm{cm}}^{-3}\right]=0.99986+6.69\times {10}^{-5}T+8.486\times {10}^{-6}{T}^{2}+1.518\times {10}^{-7}{T}^{3}\\ -6.9484\times {10}^{-9}{T}^{4}-3.6449\times {10}^{-10}{T}^{5}-7.497\times {10}^{-12}{T}^{6}\left(T\rm{in °C}\right)\end{array}$$
Densities for ice in the range 0 > T > −140°C are averages of three data sets summarized by Hobbs (1974), which were derived from X-ray diffraction measurements of Lonsdale (1958), La Placa and Post (1960), evaluated by Eisenberg and Kauzmann (1969), and Brill and Tippe (1967) evaluated by Hobbs (1974). These data fall on a straight line, and linear regression analysis gives ρice [kg m−3] = (916.4 ± 0.4) − (0.110 ± 0.005)T [°C]. At temperatures below 140°C the density approaches a limiting value ρice = 933.1 ± 0.2 kg m−3 at T ≤ −200°C.
Table 8.3

Structure of icea

Crystal system

Occurrence

Temperature range

Hexagonal

Water frozen in bulk or deposited on a surface

0 > T > −80 (°C)

Cubic

Deposition of water vapor onto a surface

−80 > T > −130 (°C)

Vitreous/amorphous

Deposition of water vapor onto a surface

T < 140 (°C)

aAs described by Hobbs (1974)

Table 8.4

Thermodynamic properties of condensed water as a function of temperaturea

T (°C)

cw (J kg−1 K−1)

Leb (106 J kg−1)

T (°C)

ci (J kg−1 K−1)

Lsb (106 J kg−1)

Lmb (106 J kg−1)

−50

5,400

2.6348

−100

1,382

2.8236

 

−40

4,770

2.6030

−90

1,449

2.8278

 

−30

4,520

2.5749

−80

1,520

2.8316

 

−20

4,350

2.5494

−70

1,591

2.8345

 

−10

4,270

2.5494

−60

1,662

2.8366

 

 0

4217.8

2.50084

−50

1,738

2.8383

0.2035

10

4192.3

2.7474

−40

1,813

2.8387

0.2357

20

4181.8

2.4535

−30

1,884

2.8387

0.2638

30

4178.5

2.4300

−20

1,959

2.8383

0.2889

40

4178.5

2.3823

−10

2,031

2.8366

0.3119

50

4180.6

2.3823

0

2,106

2.8345

0.3337

aSymbols: cw, specific heat of water; Le, latent heat of evaporation; ci, specific heat of ice; Ls, latent heat of sublimation; Lm, latent heat of melting; Source: Laube and Höller (1988)

bTo convert (J kg−1) to (J mol−1) multiply with Mw = 1.80153 × 10−2 (kg mol−1)

Table 8.5

Saturation vapor pressures (Pa) of liquid water and of ice as a function of temperature (°C)a

t

e sw

t

e sw

e si

t

e si

0

611.2

0

611.2

611.2

−42

10.28

2

706.0

−2

527.9

517.6

−44

8.07

4

813.5

−4

454.9

437.3

−46

6.37

6

935.2

−6

391.0

368.5

−48

5.01

8

1072.8

−8

335.2

309.7

−50

3.92

10

1227.9

−10

286.6

259.7

−52

3.05

12

1402.5

−12

244.4

217.1

−54

2.37

14

1598.6

−14

207.8

181.0

−56

1.83

16

1818.3

−16

176.2

150.4

−58

1.41

18

2064.1

−18

149.0

124.7

−60

1.08

20

2338.6

−20

125.6

103.1

−62

0.82

22

2644.4

−22

105.6

84.9

−64

0.62

24

2984.7

−24

88.5

69.7

−66

0.47

26

3362.6

−26

73.9

57.1

−68

0.35

28

3781.6

−28

61.5

46.6

−70

0.26

30

4245.2

−30

51.1

37.9

−75

0.12

32

4757.8

−32

42.2

30.7

−80

0.055

34

5322.9

−34

34.8

24.8

−85

0.023

36

5945.3

−36

28.6

20.0

−90

0.0096

38

6629.8

−38

23.4

16.0

−95

0.0038

40

7381.4

−40

19.0

12.8

−100

0.0014

aData for temperatures t > −40°C from Laube and Höller (1988). Vapor pressures for ice at temperatures t < −40°C were calculated from the formula given below. These values agree with those recommended by Wagner et al. (1994). Vapor pressure refers to pure water and a plane surface. The data are based on accurate values obtained by integration of the Clausius-Clapeyron Equation. The vapor pressures over water and ice, respectively, are fitted by

\(\begin{array}{l}\mathrm{ln}{e}_{\rm{w}}\left(\rm{Pa}\right)\\=21.1249952-6094.4642/T-0.027245552\\T+1.6853396\times {10}^{-5}{T}^{2}\\ \rm{}+2.4575506\\\mathrm{ln}(T)\rm{}273 \rm{K}<T<373\\rm{K}\end{array}\)

\(\begin{array}{l}\mathrm{ln}{e}_{\rm{i}}\left(\rm{Pa}\right)\\=-3.5704628-5504.4088/T-0.017337458\\T+6.5204209\times {10}^{-6}{T}^{2}\\ \rm{}+6.1295027\\\mathrm{ln}(T)\rm{}173\rm{K}<T<273\\rm{K}\end{array}\)

Table 8.6

Miscellaneous properties of pure water and ice as a function of temperature a : Thermal conductivity, κ, shear viscosity, η, coefficient of self-diffusion in liquid water, DH2O, dielectric constant, ε, surface tension of water against air, σs

t (°C)

κliquid (W m−1 K−1)

κ ice

η (mPa s)

DH2O (105 cm2 s−1)

ε liquid

ε ice

σs (N m−1)

−35

 

2.55

18.70

0.128

106.8

101.6

 

−30

 

2.50

10.20

0.204

103.7

100.2

 

−25

 

2.45

6.45

0.310

100.8

98.7

 

−20

 

2.40

4.34

0.445

97.9

97.3

 

−15

 

2.35

3.30

0.555

95.2

95.9

 

−10

 

2.30

2.63

0.704

92.7

94.4

0.07710

−5

 

2.21

2.15

0.899

90.2

93.0

0.07640

±0

0.561

2.14

1.793

1.098

87.9

91.6

0.07562

5

0.571

 

1.535

1.313

85.9

 

0.07490

10

0.580

 

1.307

1.532

84.0

 

0.07420

15

0.589

 

1.142

1.777

82.1

 

0.07348

20

0.598

 

1.002

2.017

80.2

 

0.07275

25

0.607

 

0.893

2.299

78.4

 

0.07275

30

0.615

 

0.798

2.596

76.6

 

0.07115

35

0.623

 

0.723

2.919

74.9

 

0.07035

40

0.631

 

0.653

3.236

73.2

 

0.06955

aSources of data: Angell (1982), Sengers and Watson (1986), Archer and Wang (1990), Laube and Höller (1988) Slack (1980), Auty and Cole (1952), Humbel et al. (1953)

Table 8.7

Different expressions for the concentration of water vapor in the atmospherea

Absolute humidity

ρv = eMw/RgT

Specific humidity

q = ρv/(ρv + ρdry air)

Mass mixing ratio

w = ρv/ρdry air

Relative humidity

f = e/es

aParameters: ρv (kg m−3) = density of water vapor; Mw = 0.0180153 (kg mol−1) molar mass of water; Rg = 8.3145 (J K−1 mol−1) gas constant; T (K) absolute temperature; e, es (Pa), partial pressure and saturation vapor pressure of water, respectively

Diffusion coefficient of water in air derived from measurements shown below:
Fig. 8.1

Diffusion coefficient for H2O in air at 1 atm pressure (1013.25 hPa) as a function of temperature

Key: • Winkelmann, A., Wiedemanns Annal. Phys. 22, 1–31; 152–161 (1884); 33, 445–453 (1888); 36, 93–114 (1889). Corrections: Trautz, M., W. Müller, Annal. Phys. 22, 333–352 (1935)

ο Gugliemo, G., Atti Acad. di Torino17, 54–72 (1881); 18, 93–107 (1882)

⋄ Houdaille, F., Fortschr. Physik52, 442–443 (1897)

+ Brown, H.T., F. Escombe, Philos. Trans. R. Soc. Lond. B 190, 223–291 (1900)

× Mache, H., Ber. Kaiserl. Acad. Wien119, 1399–1423 (1910)

Δ Le Blanc, M., G. Wuppermann, Z. Physik. Chem. 91, 143–154 (1916)

▲ Gilliland, E.R. Ind. Eng. Chem. 26, 681–685 (1934)

* Schirmer, R., Z. Verein Deutscher Ing. Beihefte Verfahrenstechn. 6, 170–177 (1938)

♦ Brookfield, K.J., H.D.N. Fitzpatrick, J.F. Jackson, J.B. Matthews, E.A. Moelwyn-Hughes, Proc. R. Soc. Lond. A 190, 59–67 (1947)

⊗ Average of data at 25°C from 5 investigators: Gugliemo (D25 = 0.257), Le Blanc and Wuppermann (D25 = 0.258), both cited above; Kimpton, D.D., F.T. Wall, J. Phys. Chem. 56, 715–717 (1952) [D25 = 0.257]; Lee, C.Y., C.R. Wilke, Ind. Eng. Chem. 46, 2381–2387 (1954) [D25 = 0.260]; Nelson, E.T., J. Appl. Chem. 6, 286–292 (1956) [D25 = 0.257]. The average value is: D25av = 0.2578 ± 0.0013 (cm2 s−1)

Comments: Only statistically meaningful data identified by Massman (1998) are used in Fig. 8.1. The dependence of diffusivity on pressure and temperature can be expressed by
$$D={D}_{\rm{o}}\left({p}_{\rm{o}\rm}\rm{}/\rm{}p\right)\rm{\left(T\rm{}/\rm{}\rm{T}_{\rm{o}}\right)}^{n}$$
where Do is the diffusion coefficient at standard pressure po = 1 atm (1013.25 hPa) and a standard absolute temperature To. In view of the excellent agreement of 5 independent values obtained at 298.15 K it is recommended to use of To = 298.15 K and Do = 0.2578 [cm2 s−1]. The exponent n is obtained from a two parameter logarithmic regression analysis, which after omitting obvious outliers yields n = 1.830 ± 0.054 (R2 = 0.975) with Do(298.15) = 0.258 (shown by the solid line). No data exist for To ≤ 273.15 K so that extrapolation is required.

References

Angell, C.A., Super-cooled water, in Water, A Comprehensive Treatise, ed. by F. Franks. Water and Aqueous Solutions at Subzero Temperatures, vol. 7 (Plenum Press, New York, 1982), pp. 1–81

Archer, D.G., P. Wang, J. Phys. Chem. Ref. Data 19, 371– (1990)

Auty, R.P., R.H. Cole, J. Chem. Phys. 20, 1309–1314 (1952)

Brill, R., A. Tippe, Acta Crystallogr. 23, 343–345 (1967)

Eisenberg, D., W. Kauzmann, The Structure and Properties of Water (Oxford University Press, London, 1969)

Hare, D.E., C.M. Sorensen, J. Chem. Phys. 87, 4840–4845 (1987)

Hobbs, P.V., Ice Physics (Clarendon Press, Oxford, 1974)

Humbel, F., F. Jona, P. Scherrer, Helv. Phys. Acta 26, 17–32 (1953)

La Placa, S.J., B. Post, Acta Crystallogr. 13, 503–505 (1960)

Laube, M., H. Höller, Cloud Physics, in Meteorology, ed. by G. Fischer. Landolt-Börnstein, New Series, vol. V/4b (Springer, Berlin, 1988), pp. 1–100

Linstrom, P.J., W.G. Mallard, NIST Standard Reference Database No. 69, (National Institute of Standards and Technology, Gaithersburg, 2005), http://webbook.nist.gov

Lonsdale, K., Proc. Roy. Soc. A 247, 424–434 (1958)

Massman, W.J., Atmos. Environ. 32, 1111–1127 (1998)

Sengers, J.V., J.T.R. Watson, J. Phys. Chem. Ref. Data 15, 1291–1314 (1986)

Slack, G.A., Phys. Rev. B 22, 3065–3071 (1980)

Wagner, W., A. Saul, A. Pruss, J. Phys. Chem. Ref. Data 23, 515– (1994)

8.2 Global Distribution of Clouds, Precipitation and Chemical Constituents

Table 8.8

Zonal mean distribution of atmospheric water vapor and annual precipitation rate a

 

W (kg m−2)

P (kg m−2 a−1)

Latitude belt

A

B

A

C

D

80–90°N

4.90

4.21

120

46

146

70–80

6.48

5.68

185

200

310

60–70

8.52

8.02

415

507

639

50–60

11.64

10.33

789

843

865

40–50

15.21

14.55

907

874

938

30–40

18.95

22.13

872

761

876

20–30

26.37

29.04

790

675

646

10–20

36.73

38.03

1,151

1,117

989

0–10

41.07

46.66

1,934

1,885

1,708

0–10°S

40.90

44.15

1,445

1,435

1,343

10–20

36.66

36.29

1,132

1,109

931

20–30

29.86

27.78

857

777

774

30–40

23.81

19.67

932

875

956

40–50

18.10

12.76

1,226

1,128

1,040

50–60

12.61

8.45

1,046

1,003

1,124

60–70

6.84

4.84

418

549

394

70–80

2.87

2.79

82

230

274

80–90

1.56

2.05

30

73

164

Global average

24.67

28

1,004

975

953

aA: from meteorological stations, data presented by Sellers (1965); B: satellite-derived data 1990–1995 summarized by Raschke and Stubenrauch (2005); C: Baumgartner and Reichel (1975); D: satellite-derived data 1979–2003, Global Precipitation Climatology Project (Adler et al. 2003)

Table 8.9

Zonal means of cloud type and clear sky frequencies (%)a

Latitude belt

Cb

Ci

Thin Ci

As

Ac

St

Cu

Clear sky

Over the oceans

NH

60–90°

1

6

3

16.5

3.5

37

13.5

31

30–60°

2

15.5

10

10

3

22.5

11.5

20.5

30–15°

1

11

17.5

2

2.5

12

13.5

36.5

Tropics

2

19.5

23

2

1.5

11.5

11

30

SH

15–30°

1.5

10

12

2.5

3.5

17.5

18.5

34

30–60°

2

14.5

7.5

12

3.5

25

15

18.5

60–90°

1

7.5

2.5

20

2.5

42

8

13.5

Over land

NH

60–90°

2

6

6

21

10

21.5

10

20.5

30–60°

3

12

10

12.5

5.5

12

8

33

30–15°

2

12

17.5

3.5

1.5

11.5

11.5

40

Tropics

3.5

28

23

3

2

9

4

27

SH

15–30°

2

13.5

13.5

4.5

2.5

6

7

48.5

30–60°

4

13.5

10

6

3.5

8.5

9.5

44.5

60–90°

12.5

10

9

30

11.5

15

7.5

10

aFrequencies of occurrence: cumulonimbus, Cb, cirrus, Ci, altostratus, As, altocumulus, Ac, stratus, St, cumulus, Cu, and clear sky; 5 year averages derived from TIROS-N Operational Vertical Sounder (TOVS) instruments on NOAA Polar Orbiting Environmental Satellites. Source: Stubenrauch (2005)

Table 8.10

Frequency of occurrence and areal coverage of common cloud types a

Type of cloud

Oceans

Continents

Frequency of occurrence (%)

Area covered (%)

Frequency of occurrence (%)

Area covered (%)

Stratus and Stratocumulus

45

34

27

18

Cumulus

33

12

14

5

Cumulonimbus

10

 6

 7

4

Altostratus and altocumulus

 6

 6

 6

5

Nimbostratus

46

22

35

21

Cirrus, cirrostratus, cirrocumulus

37

13

47

23

Global average

 

64.8

 

52.4

aSource of data: Heymsfield (1993)

Table 8.11

Regional wet deposition rates of sulfate, nitrate and ammonium (g m−2 a−1)a

 

Sulfate

Nitrate

Ammonium

Europe

3.0 (1.4–4.3)

1.9 (0.6–2.5)

0.6 (0.3–1.1)

Eastern North America

1.4 (0.5–3.0)

0.8 (0.5–1.9)

0.2 (0.1–0.4)

Northern South America

0.7 (0.1–1.9)

0.2 (0.06–0.6)

0.07 (0.02–0.3)

Eastern Asia

6.1 (1.1–8.1)

2.1 (0.8–1.9)

0.9 (0.6–1.7)

Africa

0.8 (0.2–1.6)

1.5 (0.3–2.4)

0.3 (0.1–0.7)

Australia

0.4 (0.19–1.2)

0.25 (0.1–0.5)

0.06 (0.04–0.2)

aMedian values, range (10–90 percentile) in parentheses. Source of data: Whelpdale and Kaiser (1996)

Comments: The origins of inorganic ions in rainwater are aerosol particles incorporated during the process of cloud formation and, in the case of sulfate and nitrate, chemical oxidation reactions occurring in the aqueous phase as well as in the gas phase.
Table 8.12

Concentrations (μmol dm−3) of major inorganic ions in cloud and fog watersa

 

East Europe

Southern England non-precipitating

Whiteface Mt., New York intercepted clouds

Kleiner Feldberg Germany intercepted clouds

Brocken., Germany mountain fog

Pasadena California ground fog

Laegeren Mt. Switzerland ground fog

Precipitating

Non-precipitating

SO42−

29

117

40

26–70

61.7

387

240–472

40–1,719

Cl

22.2

76.8

94

1.7–3.1

84.7

205

480–730

68–4,316

NO3

3.2

16.1

18.6

140–215

183.7

225

1,220–3,250

44–4,420

HCO3

11.5

16.4

0.14–91

0.023–0.045

0.03

0.72

0.005–0.4

0.004–57

NH4+

28.8

11.1

22.1

32–89

185.6

710

1,290–2,380

102–9,215

Na+

17

29.8

95.2

2.3–11

46.3

295

320–500

14–789

K+

5.1

20.4

12.5

13–20

8.7

85

33–53

9–424

Ca2+

10

29.3

33.2

5–10

6.0

110

70–265

7–11,230

Mg2+

12.3

40.0

12.3

1.1–3.1

8.7

45–160

0–135

H+

5.0

94.4

0.06–40

126–251

168

7.9

14–1,200

0.1–1,380

pH

5.3

4.02

4.4–7.2

3.6–3.9

3.77

5.1

2.92–4.85

2.9–7.1

Sum of anions b

95

327

193

194–358

407

1,429

2,180–4,924

192–12,074

Sum of cationsb

100

294

220

185–397

438

1,323

1,887–4,983

139–34,538

aFrom the summary presented by Warneck (2000), slightly abbreviated, with permission of Elsevier

bSum of charges

Table 8.13

Inorganic ion composition (μmol dm−3) of rainwater at various Locationsa

 

North Sweden 1969

Belgium 1969

East Europe 1961–1964

New Hampshire 1963–1974

California 1978–1979

San Carlos, Venezuela 1979–1980

Katherine Australia 1980–1984

Cape Grim Tasmania 1977–1981

Amsterdam Island 1980–1987

Bermuda 1979–1980

SO42−

21

63

82

29.8 ± 1.2

19.5

1.6 ± 1.2

2

79.1

37.2

24.4 ± 23.8

Cl

11

55

60

14.4 ± 2.5

28

4.3 ± 3.4

8

1,349

317.6

264 ± 337

NO3

5

36

17.7

23.1 ± 1.7

31

3.5 ± 3.6

4.1

5

1.6

7.9 ± 9.1

HCO3

21

0.15

71.7

0.077

0.15

0.33

0.32

5.6

0.67

0.27

NH4+

6

25

52.8

12.1 ± 0.7

21

17.0 ± 10

2.9

2

2.4

4.8 ± 7.1

Na+

13

42

65.2

5.4 ± 0.6

24

2.7 ± 2.0

4.5

1,297

268.8

221 ± 282

K+

5

6

17.3

1.9 ± 0.5

2

1.1 ± 1.7

1.1

32.3

5.9

6.5 ± 8.0

Ca2+

16

33

38.1

4.3 ± 0.6

3.5

0.25 ± 0.35

0.95

42.9

12.1

7.2 ± 7.1

Mg2+

5

15

52.5

1.8 ± 10.4

3.5

0.4 ± 0.45

0.7

122

60.3

24.6 ± 30.4

H+

38

3.3

73.9 ± 3.0

39

17 ± 10

16.9

1

8.4

21.1 ± 26.9

pH (av.)

4.42

5.48

4.13

4.41

4.77

4.77

5.99

5.08

4.68

Sum of anionsb

79

217

313

97.1

98

11

16.1

1,512

397

321

Sum of cationsb

66

207

320

105

93

39

28.7

1,662

430

273

Annual precip. (mm)

360

648

1,310

697

4,000

104

1,120

1,120

1,131

aFrom the summary presented by Warneck (2000), slightly abbreviated, with permission of Elsevier

bSum of charges (2000)

Table 8.14

Volume-averaged formic and acetic acid concentrations in precipitation at various locations of the world and the corresponding gas-phase mixing ratiosa

 

HCOOH

CH3COOH

Aqueousb (μmol dm−3)

Gaseousc (nmol mol−1)

x 0 c

Aqueousb (μmol dm−3)

Gaseousc (nmol mol−1)

x 0 c

Continental

Poker Flat, Alaska

4.3

0.07

0.29

1.2

0.07

0.13

Charlottesville, Virginia

April-September

11.6

0.55

1.15

4.4

0.39

0.62

October-March

2.7

0.08

0.22

1.6

0.12

0.20

Wilmington, North Carolina

7.4

0.13

0.31

3.6

0.57

0.75

Calabozo, Venezuelad

6.5

0.03

0.34

3.5

0.22

0.39

Altos de Pipe, Venezuelad

6.4

0.01

0.32

5.6

0.17

0.44

Lago Colado, Brazil

19.0

0.39

1.37

8.8

0.58

1.04

Torres del Paine, Chile

0.5

<0.02

0.05

0.4

0.01

0.03

Katherine, Australia

10.5

0.16

0.70

4.2

0.24

0.46

Dimonika, Congo

6.6

0.07

0.39

3.0

0.37

0.51

Agra, India

12.7

<0.01

0.62

10.6

0.02

0.51

Marine

Mauna Loa, Hawaii

2.0

0.03

0.13

0.6

0.03

0.06

North Pacific

3.4

0.05

0.23

1.9

0.10

0.20

90 Mile Beach, New Zealand

1.0

<0.02

0.08

0.2

0.01

0.02

Amsterdam Island

2.2

0.01

0.12

0.6

0.02

0.05

High Point, Bermuda

2.2

0.03

0.14

1.3

0.06

0.13

North Atlantic

4.2

0.05

0.27

1.2

0.14

0.28

Cape Point, South Africa

1.8

0.02

0.10

0.6

0.01

0.04

aData sources: Warneck (2000) with permission of Elsevier, Keene and Galloway (1986), Avery et al. (1991), Lacaux et al. (1992), Kumar et al. (1993), Sanhueza et al. (1996)

bVolume-weighted aqueous concentration of anions and undissociated acid combined

cGas-phase mixing ratio in equilibrium with the aqueous phase as calculated from the observed anion and hydrogen ion concentrations and the Henry’s law coefficients normalized to 25 K and 101,325 Pa pressure, x0 (nmol mol−1) in the absence of liquid water assuming a liquid water volume fraction of 2 × 10−6

dCalabozo is located in the savannah region, Altos de Pipe is a high altitude forested site

Comments: The main origin of formaldehyde and acetaldehyde in rain water is the absorption of these compounds into cloud water from the gas phase. The concen­tration of these compounds bound to aerosol particles is low compared to that in the gas phase.
Table 8.15

Percentage contributions of anion equivalents to the acidity of rainwater and cloud water at various locationsa

 

Cl

SO42−

NO3

HCOOH

CH3COOH

Rain water

Joaquin del Tigre, Venezuela (1)

13

 8

15

33

31

Chaguaramas, Venezuela (1)

8

18

16

30

29

La Paragua, Venezuela (1)

11

15

11

34

29

Amazonia, Brazil (2)

30

15

10

26

19

Torres del Paine, Chile (3)

18

14

 6

55

7

Dimonika, Congo (4)

23

41

29

7

Katherine, Australia (5)

25

12

15

39

9

Barrington Tops, Australia (6)

7

23

26

24

20

Dayalbagh (Agra) India (7)

29

31

23

9

8

Bermuda (8)

66

21

9

3

Cloud water

Redwood Natl. Park, Calif. (9)

71

13

11

5

Loft Mountain, Virginia (9)

4.3

67

27

1

1

Mohonk Mountain, New York (9)

5

53

34

6

2

Whiteface Mountain, New York (9)

81

16

2

1

aData sources: (1) Sanhueza et al. (1992), savannah regions; (2) Andreae et al. (1990), (3) Galloway et al. (1996); (4) Lacaux et al. (1992); (5) Likens et al. (1987); (6) Post et al. (1991); (7) Kumar et al. (1993); (8) Galloway et al. (1989); (9) Weathers et al. (1988)

References

Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P.-P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, E. Nelkin, J. Hydrometeorol. 4, 1147–1167 (2003)

Andreae, M.O., R.W. Talbot, H. Berresheim, K.M. Beecher, J. Geophys. Res. 95, 16987–16999 (1990)

Avery, G.B., J.D. Willey, C.A. Wilson, Environ. Sci. Technol. 25, 1875–1880 (1991)

Baumgartner, A., E. Reichel, The world Water Balance: Mean Annual Global Continental and Maritime precipitation, Evaporation and Runoff (Elsevier, Amsterdam, 1975)

Galloway, J.N., W.C. Keene, R.S. Artz, J.M. Miller, T.M. Church, A.H. Knap, Tellus 41B, 427–443 (1989)

Galloway, J.N., W.C. Keene, G.E. Likens, J. Geophys. Res. 101, 6883–6897 (1996)

Heymsfield, A.J., Microphysical structures of stratiform and cirrus clouds, in Aerosol-Cloud-Climate Interactions, ed. by P.V. Hobbs (Academic Press, San Diego, 1993), pp. 97–121

Keene, W.C., J.N. Galloway, J. Geophys. Res. 91, 14466–14474 (1986)

Kumar, N., U.C. Kulshrestha, A. Saxena, K.M. Kumari, S.S. Srivastava, J. Geophys. Res. 98, 5135–5137 (1993)

Lacaux, J.P., R. Delmas, G. Kouado, B. Cros, M.O. Andreae, J. Geophys. Res. 97, 6195–6206 (1992)

Likens, G.E., W.C. Keene, J.M. Miller, J.N. Galloway, J. Geophys. Res. 92, 13299–13314 (1987)

Post, D., H.A. Bridgman, G.P. Ayers, J. Atmos. Chem. 13, 83–95 (1991)

Raschke, E., C. Stubenrauch, Water Vapor in the Atmosphere, in Observed Global Climate, ed. by M. Hantel. Landolt-Börnstein, New Series, Group V, Geophysics, vol. 6 (Springer, Berlin, 2005), pp. 5–1 – 5–18

Sanhueza, E., M.C. Arias, L. Donoso, N. Graterol, M. Hermosos, I. Marti, J. Romero, A. Rondón, M. Santana, Tellus 44B, 54–62 (1992)

Sanhueza, E., L. Figueroa, M. Santana, Atmos. Environ. 30, 1861–1873 (1996)

Sellers, W.D., Physical Climatology (University of Chicago Press, Chicago, 1965)

Stubenrauch, C., Clouds, in Observed Global Climate, ed. by M. Hantel. Landolt-Börnstein, New Series, Group V, Geophysics, vol. 6 (Springer, Berlin, 2005), pp. 6–1 – 6–24

Warneck, P., Chemistry of the Natural Atmosphere, 2nd edn. (Academic Press, San Diego, 2000), Copyright Elsevier

Weathers, K.C., G.E. Likens, F.H. Bormann, S.H. Bicknell, B.T. Bormann, B.C. Daube Jr., J.S. Eaton, J.N. Galloway, W.C. Keene, K.D. Kimball, W.H. McDowell, T.G. Siccama, D. Smiley, R.A. Tarrant, Environ. Sci. Technol. 22, 1018–1026 (1988)

Whelpdale, D.M., M.S. Kaiser (eds.), Global Acid Deposition Assessment. WMO Global Atmosphere Watch Report 106, World Meteorological Organization, Geneva, 1996

8.3 Appearance and Microstructure of Clouds

Characterization of clouds:

Clouds are differentiated by appearance and internal structure. The following genera of clouds are commonly distinguished (Laube and Höller 1988):
  • Cirrus
    • Non-precipitating, detached clouds in the form of white, delicate filaments, or white patches or narrow bands occurring in the 5–13 km altitude region. Cirrus is composed exclusively of ice crystals that are large enough to acquire an appreciable terminal velocity so that vertical trails may form.

  • Cirrocumulus
    • Thin, white patch, sheet or layer cloud in the form of more or less regular grains or ripples, occurring most frequently at altitudes above 5 km. Cirrocumulus contains ice crystals and super-cooled water drops (non-precipitating).

  • Cirrostratus
    • Whitish cloud veil of fibrous or smooth appearance occurring at altitudes above 5 km, totally or partly covering the sky, generally associated with halo phenomena; composed mainly of ice crystals (non-precipitating).

  • Altocumulus
    • White or gray (or both) patch, sheet or layer cloud, generally with shading, occurring most frequently at altitudes between 2 and 7 km. It consists of water drops; at very low temperature ice crystals may form (non-precipitating).

  • Altostratus
    • Grayish or bluish cloud sheet or layer of striated, fibrous or uniform appearance, totally or partly covering the sky and usually occurring at altitudes between 2 and 7 km. Altostratus nearly always exists as a layer of considerable horizontal extent (10–100 km) with appreciable vertical depth (several 100–1,000 m). The lower part is composed of water drops, the upper part of ice crystals, and the middle part of a mixture of both. Precipitation as rain is common, snow or ice pellets are possible.

  • Nimbostratus
    • Gray cloud layer, often dark, of diffuse appearance due to falling rain or snow, with the main part occurring at altitudes between 2 and 8 km. Nimbostratus consist of water drops and raindrops, snow crystals and flakes. Precipitation as rain is usual, snow and ice pellets are possible.

  • Stratocumulus
    • Gray or whitish (or both) patch, sheet or layer cloud, usually occurring at altitudes below 2 km, with thickness ranging from 500 to 1,000 m. It is composed of water drops sometimes accompanied by raindrops, snow pellets, crystals or flakes. Precipitation in the form of rain, snow and snow pellets is possible.

  • Stratus
    • A usually gray cloud layer with fairly uniform base, occurring at altitudes between the earth surface and 2 km and consisting of small water drops; at very low temperatures small ice particles may be present. Precipitation occurs as drizzle, snow grains or ice prisms may be possible.

  • Cumulus
    • Detached clouds, usually dense with sharp boundaries and developing in the form of mounds, domes or towers. The base is fairly dark and often well-defined. Cumulus occurs in various sizes depending on the degree of development with vertical extent ranging from about 100 m up to >5 km altitude. Cumulus is composed of water drops. Precipitation as rain is possible.

  • Cumulonimbus
    • Heavy and dense cloud with large vertical extent in the form of a mountain or huge tower reaching beyond 6 km (often up to 15 km) altitude. The appearance of the upper part is smooth, fibrous or striated and nearly always flattened. This part generally spreads out in the form of an anvil or vast plume. Cumulonimbus is composed of water drops, the upper part of ice crystals. Precipitation as rain is common, snow, snow pellets or hail are possible. Species:

Further subdivision is made to identify observed peculiarities in shape and internal structure.

Examples:
  • Congestus: cumulus clouds of great vertical extent,

  • Fibratus: detached clouds or a thin veil;

  • Lenticularis: clouds having the shape of lenses or almonds; commonly seen in mountainous regions;

  • Nebulosus: a cloud like a nebulous veil or layer without distinct details;

  • Stratiformis: clouds spread out in an extensive horizontal sheet or layer.

Formation of clouds:

In the atmosphere, water drops are formed by the activation of aerosol particles when, due to the cooling of air, the relative humidity rises beyond the saturation level (r.h. > 100%). The deliquescence of water-soluble salts associated with aerosol particles leads to the addition of water in accordance with Raoult’s law. At r.h. > 100% a critical size exists, depending on surface curvature (Kelvin effect) and degree of supersaturation. Particles that overcome the critical size enter a region of instability and grow further to form a cloud drop.
Table 8.16

Equations governing the condensation (and evaporation) of water vapora

\(\frac{dm}{dt}=4pr{x}_{\rm{D}}D\left({r}_{\rm{va}}-{r}_{\rm{vr}}\right)\)

\( {x}_{\rm{D}}={\left(\frac{r}{r+\Delta r}+\frac{4D}{ar\overline{v}}\right)}^{-1}\)

\( L\frac{dm}{dt}=4pr{x}_{\rm{T}}K\left({T}_{\rm{r}}-{T}_{\rm{a}}\right)\)

\( {\xi }_{\rm{T}}={\left(\frac{r}{r+\Delta r}+\frac{4K}{{a}_{\rm{T}}r{r}_{\rm{a}}{c}_{\rm{pa}}\overline{v}}\right)}^{-1}\)

aAssumptions: spherical symmetry, constant ambient density of air, ρa, of water vapor, ρva, and of temperature, Ta

Quantities: r(t) = radius, ρw = density of liquid water, m(t) = (4/3)πρwr3= mass of the water drop, ρvr(t, Tr) = density of water vapor at the drop’s surface, Tr(t) = temperature at the drop’s surface, D(T) = ­diffusion coefficient for water in air, L(T) = latent heat of vaporization, Κ(T) = coefficient of thermal conductivity, ρva = esa(Mw/RgTa), esa = water vapor pressure (determined by the Clausius-Clapeyron equation), Mw = molar mass of water; Rg = gas constant; ξD and ξT are correction factors required on the one hand, for the initial growth phase when the size of drops is comparable to the mean free path λ between collisions of molecules in the gas phase, and on the other hand to make allowance for mass and thermal accommodation; Δrλ, α = mass accommodation coefficient, αT = thermal accommodation coefficient, ν = (8 RgTaMw)½ = mean thermal velocity of water molecules in air, cpa = 1005.7 (J kg−1 K−1) = (specific) heat capacity of air at constant pressure. Source: Pruppacher and Klett (1997)

Comments: Both equations are coupled and should be solved together. No measurements exist for the thermal accommodation coefficient, which usually is taken to be close to unity. Table 8.17 summarizes the other parameters as a function of temperature.
Table 8.17

Saturation vapor pressure over water, es (Pa), the corresponding water vapor density ρws (kg m−3), latent heat of condensation, L (kJ kg−1), coefficient of thermal conductivity of dry air K (J m−1 s−1 K−1), diffusion coefficient D (m2 s−1) of water vapor in air (p = 101.325 kPa), mass accommodation coefficient α, as a function of temperature

T(°C)

e s a

102ρws

L b

102Κc

105Dd

α e

−30

51.06

0.04550

2,575

2.16

1.776

0.430

−20

125.63

0.10753

2,549

2.23

1.912

0.337

−10

286.57

0.23596

2,525

2.32

2.053

0.262

0

611.21

0.48484

2,501

2.40

2.198

0.202

5

872.47

0.67964

2,489

2.44

2.272

0.178

10

1227.94

0.93965

2,477

2.48

2.347

0.156

15

1705.32

1.28231

2,466

2.52

2.424

0.138

20

2338.54

1.728486

2,454

2.55

2.501

0.122

25

3168.74

2.30280

2,442

2.60

2.580

0.108

30

4245.20

3.03421

2,430

2.63

2.660

0.096

35

5626.45

3.95619

2,418

2.68

2.741

0.085

aValues for t ≥ 0°C are from Wexler (1976), values of es below 0°C were obtained by extrapolation. Compare this with Table 8.5

bTo convert J g−1 to J mol−1 multiply with Mw = 18.0153 g mol−1

cFor typical atmospheric conditions, the conductivity of moist air is essentially the same as for dry air; Κ (mJ m−1 s−1°C−1) = 23.822 + 0.070338 (t/°C) (Beard and Pruppacher 1971); the formula is based on theoretical data of Mason and Monchick (1962) and experimental data of Taylor andJohnston (1949) and Franck (1951)

dD = Do × (T/To)1.83, To = 298.15 K, Do = 2.58 × 10−5 (m2 s−1)

eCalculated from: α/(1 + α) = exp(−ΔGs/RgT) with ΔGs = ΔHsTΔSs; where ΔHs = (20.083 ± 2.092) kJ mol−1, ΔSs = (84.94 ± 7.53) J mol−1 K−1, Rg = 8.3145 J mol−1 K−1 (Li et al. 2001)

Table 8.18

Microstructure of clouds: characteristic values:a number concentration of particles, N, size range, Δ r, liquid water content/ice content, LWC/IC, altitude region of occurrence, cloud depth Δ z, updraft velocity vz

Cloud type

N (cm−3)

LWC/IC (g m−3)

Altitude (km)

Δ z (km)

vz (m s−1)

Cumulus

Continental

200–1,000b

0.1–0.4

1–5

0.3–4

0.5–2

Marine

80–250

0.4–0.5

1–3

1

 

Stratus

Continental

100–400

0.1–0.9

0–2

0.4

0.005–0.5

Marine

50–350

0.3–0.8

0–2

0.4–0.9

 

Altostratus/altocumulus

20–250

0.05–0.3

2–7

1–2

0.005–0.5

Cumulonimbus

∼100

1–5

1–15

1–15

5–10

Cirrus

0.01–10

0.001–0.1

7–15

Thin

0.02–0.4

aSource of data: Heymsfield (1993), Pruppacher and Klett (1997), Seidl (1994), Lelieveld et al. (1989)

bHigh numbers occur in polluted regions with high aerosol content

Comments: The number concentration of water drops depends on the concentration of aerosol particles and on the level of supersaturation reached. High aerosol concentrations as found over the continents lead to larger concentrations of cloud drops than low concentrations of aerosol particles over the ocean. The supersaturation levels resulting from adiabatic cooling are higher in cumulus clouds than in stratus, owing to larger updraft velocities occurring in cumuli (∼1 m s−1) versus stratus (∼0.1 m s−1). The growth of cloud drops is initially rapid but it slows down with increasing drop size (the surface to volume ratio decreases with radius−1), so that size distributions at the cloud base are quite narrow. Drop sizes in continental cumuli are centered near 5 μm radius, maritime cumuli feature broader size distributions centered near 8 μm radius. In all clouds, the size distribution broadens with height above cloud base, while the number concentration of cloud drops is determined by the peak supersaturation. Bimodal size distributions are frequently observed, usually near the top of the cloud. This feature is thought to be caused by turbulence and/or entrainment of ambient air. The further growth of cloud drops toward sizes in the precipitation range requires the coalescence of cloud drops (in warm clouds) or the formation of ice particles that subsequently scavenge liquid water drops.
Table 8.19

Observed size spectra of cloud drops, frequency distribution (% μm−1)a

Radius (μm)

Continental

Maritime

A

B

C

D

E

F

G

H

I

2

5.2

0.3

6.0

4.9

0.2

 

4.2

5.0

 

3

10.9

1.5

8.9

15.4

0.8

0.2

2.9

11.0

3.9

4

15.9

2.4

12.7

22.2

2.7

0.7

2.9

13.9

4.9

5

15.9

4.2

13.4

20.4

6.8

1.1

3.3

14.3

5.7

6

13.7

5.1

12.1

15.4

11.8

2.8

3.9

16.7

6.2

7

12.0

6.3

7.9

10.2

15.0

4.8

4.5

16.4

6.9

8

9.3

8.4

4.6

6.2

16.8

6.9

5.4

9.5

8.3

9

7.1

10.8

3.5

3.2

16.7

10.2

6.6

4.8

10.3

10

4.4

12.0

2.8

1.5

12.5

12.4

7.8

2.7

14.2

11

2.7

11.4

2.3

0.6

8.6

12.4

9.6

1.9

15.2

12

1.6

9.6

1.8

 

5.1

11.7

11.0

1.6

12.0

13

0.7

7.8

1.9

 

2.0

10.0

12.4

1.2

5.9

14

0.5

6.0

2.3

 

0.7

8.7

11.2

0.6

2.9

15

0.4

4.2

4.2

 

0.2

7.2

7.6

0.3

1.4

16

 

3.3

5.2

  

5.2

4.7

 

1.0

17

 

2.4

7.3

  

3.2

2.0

 

0.7

18

 

1.8

3.3

  

1.7

0.5

 

0.5

19

 

1.2

0.3

  

0.7

0.1

 

0.1

aDerived by interpolation and smoothing of published data

A, B: cumuli over England up to 2,100 m in depth; averages of 3 samples each taken near 1 and 2 km altitude, respectively; data selected from Durbin (1959)

C: sample taken near the top of a 1,400 m deep cumulus cloud over Australia demonstrating bimodal distribution (Warner 1969)

D, E: wintertime stratus over southern Germany, cloud base ∼700 m, cloud top ∼1,200 m, sampled at 700 and 970 m, respectively (Hoffmann and Roth 1989)

F: Trade wind cumuli near Hawaii sampled near cloud base at 1 km altitude (Squires 1958; Jiusto 1967)

G: wintertime cumuli of ∼ 2 km depth near Tasmania, average of 2 samples at 2.4 and 2.9 km altitude, −5/−6°C; concentrations of water and ice particles ≥300 μm were in the range (0.2–2.9) × 10−5 of total droplet concentrations (Mossop 1985)

H, I: stratocumulus over the North Sea, cloud base ∼380 m, cloud top ∼830 m; samples taken at 480 and 730 m, respectively (Nicholls 1984)

Table 8.20

Parameters for modeling cloud drop size distributionsa

Cloud type

b

r c

α

γ

Cumulus (1)

1.1046 × 10−3

4.90

5

2.16

Cumulus (2)

4.5880 × 10−3

7.72

2

2.39

Orographicb

1st mode

8.1124 × 10−5

12.35

4

1.22

2nd mode

1.9576 × 10−5

21.87

3

2.01

Stratus, base

9.7923 × 10−3

4.70

5

1.05

Stratus, top

3.8180 × 10−3

6.75

3

1.30

Stratocumulus, base

2.8230 × 10−3

5.33

5

1.19

Stratocumulus, top

1.9779 × 10−3

10.19

2

2.46

Nimbostratus, base

8.0606 × 10−4

6.41

5

1.24

Nimbostratus, top

1.0969 × 10−2

9.67

1

2.41

Radiation fog

3.0410 × 10−4

8.06

4

1.77

Advection fog

4.2028 × 10−3

5.04

5

1.17

Arctic marine fog

2.6209 × 10−3

7.85

3

1.15

aModel size distributions based on the modified Gamma function, parameters selected from Tampieri and Tomasi (1976)

bBimodal distributions resulting from droplet coalescence are frequently observed in longer-lived cumuli, and especially in rain clouds

Comments: The modified Gamma distribution function, originally introduced by Deirmendjian (1964), provides the most general form of model to describe the (monomodal) volume concentration of droplets as a function of radius (r)
$$n(r)=N\rm b\rm{r}^{a}\mathrm{exp}\left\{\rm-\left(a/g\right){\left(r/{r}_{\rm{c}}\right)}^{\rm g}\right\}\rm,\rm\rm0\le r<\infty.$$
Here, N is the total number concentration of cloud droplets, b is a normalization factor, rc is the radius where the distribution has its maximum, and α (an integer) as well as γ are positive constants that determine the shape of the distribution function. Bimodal distributions may be expressed by the sum of two suitably chosen modified Gamma distributions.
Table 8.21

Median values of effective diameter, Deff, total water content, W, extinction coefficient β, and effective cloud drop concentration, Neff, as a function of temperaturea

Temperature range (°C)

Deff (μm)

W (g m−3)

β (km)

Neff (cm−3)

0 <T< 10

16

0.16

31

95

0 <T< −10

21

0.10

11

22

−10 <T< −20

23

0.048

5

6

−20 <T< −30

20

0.021

2.5

4

−30 <T< −40

15

0.011

2

7

−40 <T< −50

18

0.007

1.5

4

aDefinitions: Deff = \( {\overline{D}}^{3}/{\overline{D}}^{2}\), W = (πρw/6)∫ f(D)D3dD, β = (3/ρw)W/Deff , Neff is defined as the concentration of the monodisperse size distribution having the same W, β, and Deff as the drop size spectrum f(D); Source of data: Korolev et al. (2001)

Table 8.22

Median values of effective diameter, Deff, total water content, W, extinction coefficient, β, and effective concentration of cloud drops, Neff, for different cloud typesa

Cloud type

Deff (μm)

W (g m−3)

β (km)

Neff (cm−3)

Cumulus

17

0.15

25

62

Stratus, stratocumulus

12

0.11

30

145

Nimbostratus

26

0.1

9

7

Altostratus, altocumulus

22

0.05

4.5

6

Cirrus

16

0.01

2.2

5

aFor definitions see footnote to previous table; source of data: Korolev et al. (2001)

References

Beard, K.V., H. Pruppacher, J. Atmos. Sci. 28, 1455–1464 (1971)

Deirmendjian, D., Appl. Opt. 3, 187–196 (1964)

Durbin, W.G., Tellus 11, 203–215 (1959)

Franck, E.U., Z. Elektrochemie55, 636–647 (1951)

Heymsfield, A.J., in Aerosol-Cloud-Climate Interactions, ed. by P.V. Hobbs (Academic Press, San Diego, 1993), pp. 97–121

Hoffmann, H.E., R. Roth, Meteorol. Atmos. Phys. 41, 24–254 (1989)

Jiusto, J.E., Tellus 19, 359–368 (1967)

Korolev, A.V., G.A. Isaak, I.P. Mazin, H.W. Barker, Quart. J. R. Met. Soc. 127, 2117–2151 (2001)

Laube, M., H. Höller, Cloud Physics. In Meteorology, ed. by G. Fischer, Landolt-Börnstein, New Series, vol. V/4b (Springer, Berlin, 1988), pp. 1–100

Lelieveld, J., P.J. Crutzen, H. Rodhe, Zonal average Cloud Characteristics for Global Atmospheric Chemistry Modelling. Report CM-76 (Department of Meteorology, University of Stockholm, Sweden, 1989)

Li, Y.Q., P. Davidovits, Q. Shi, J.T. Jayne, C.E. Kolb, D.R. Worsnop, J. Phys. Chem. A105,10627–10634 (2001)

Mason, E.A., L. Monchick, J. Chem. Phys. 36, 1622–1639 (1962)

Mossop, S.C., Quart. J. Roy. Meteor. Soc. 111, 183–198 (1985)

Nicholls, S., Quart. J. Roy. Meteor. Soc. 110, 783–820 (1984)

Pruppacher, H., J.D. Klett, Microphysics of Clouds and Precipitation, 2nd edn. (Kluwer, Dordrecht, 1997)

Seidl, W., Atmos. Res. 31, 157–185 (1994)

Squires, P., Tellus 10, 256–261 (1958)

Tampieri, F., C. Tomasi, Tellus 28, 333–347 (1976)

Taylor, W.J., H.L. Johnston, J. Chem. Phys. 14, 219–233 (1949)

Warner, J., J. Atmos. Sci. 26, 1049–1059 (1969)

Wexler, A., J. Res. Natl. Bur. Stand. 80A, 775–785 (1976)

8.4 Solubilities of Gases and Vapors in Water (Henry’s Law Coefficients)

The dissolution of atmospheric gaseous species in liquid water occurring in clouds, fog and rain is governed by Henry’s law, which states that under conditions of equilibrium (and in the ideal case) the concentration of a dissolved substance is proportional to its vapor pressure in the gas phase, and that each component acts independently of other substances simultaneously present in the system. The solubility is expressed by a coefficient that depends on the units used to describe concentration and pressure. Units frequently used in atmospheric chemistry are atmosphere for pressure (1 atm = 1.01325 × 105 Pa) and mol dm−3 for concentration in the aqueous phase. If caq denotes the concentration and p the pressure, Henry’s law coefficient takes the form
$$ {K}_{\rm{H}}={c}_{\rm{aq}}/p(\rm{mol}\{\rm{dm}^{-3}\{\rm{atm}^{-1})$$
(8.1)
The temperature dependence of KH – over not too wide a range – can be expressed by an exponential function of T (K) such that
$$ \mathrm{ln}\left({K}_{\rm{H}}\right)=-\rm{A}+\rm{B}/T$$
(8.2)
where A and B are constants. This empirical form is used in Table 8.24 presented below. Also shown are the temperature range for the experimental data that were used to calculate A and B, and the value of KH at 25°C (298.15 K). Because the measurements are confined to a temperature range above the freezing point of water, extra­polation is required if one deals with super-cooled solutions. Very precise measurements have been made in a number of cases, including the main atmospheric constituents and the rare gases. These data are better represented by an equation derived from thermodynamic considerations
$$ \mathrm{ln}(x)=\rm{A*}+\rm{B*}/T+\rm{C*}\mathrm{ln}T$$
(8.3)
where x is the chemical amount fraction of the solute in the aqueous phase, and the coefficient A*, B* and C* are related, respectively, to entropy and heat of solution and the difference in heat capacity of the substances between liquid and gaseous phases. Selected data sets have been evaluated on the basis of Eq. 8.3 and are discussed in the IUPAC Solubility Data Series. The equations were reformulated in terms of ln(KH) and are presented in Table 8.23. Because the conversion involves the density of water, which is a moderate function of T, an average density for the temperature range 0–35°C is used. Gases that react with water to form ions, such as carbon dioxide, sulfur dioxide or ammonia, which involve dissociation equilibria and depend on the pH of the solution must be treated separately (see Table 8.25). For a more extensive list of Henry’s law coefficients see www.henrys-law.org.
Table 8.23

Interpolation formulae for the solubility of gases in water, KH (mol dm−3 atm−1), based on Eq. 8.3, range 0–35°C; values for KH(298.15) are averages from experimental data

Constituent

Interpolation formula

KH(298.15)

Ref.

Helium He

ln(KH) = −101.96 + 4259.6/T + 14.009 × ln(T)

(3.88 ± 0.04) × 10−4

(1)

n = 5

Neon Ne

ln(KH) = −135.95 + 6104.9/T + 18.916 × ln(T)

(4.54 ± 0.05) × 10−4

(1)

n = 5

Argon Ar

ln(KH) = −146.40 + 7476.3/T + 20.140 × ln(T)

(1.39 ± 0.02) × 10−3

(2)

n = 5

Krypton Kr

ln(KH) = −174.52 + 9101.7/T + 24.221 × ln(T)

(3)

Xenon Xe

ln(KH) = −197.21 + 10521.0/T + 27.466 × ln(T)

(3)

Radon-222 222Rn

ln(KH) = −247.74 + 13003.0/T + 35.005 × ln(T)

(9.09 ± 0.41) × 10−3

(3)

n = 4

Oxygen O2

ln(KH) = −175.33 + 8747.5/T + 24.453 × ln(T)

(1.26 ± 0.02) × 10−3

(4)

n = 5

Nitrogen N2

ln(KH) = −177.57 + 8632.1/T + 24.798 × ln(T)

(6.49 ± 0.06) × 10−4

(5)

n = 4

Nitrous oxide N2O

ln(KH) = −154.61 + 8882.8/T + 21.253 × ln(T)

(2.42 ± 0.03) × 10−2

(6)

n = 8

Nitric oxide NO

ln(KH) = −163.86 + 8234.2/T + 22.815 × ln(T)

(1.95 ± 0.06) × 10−3

(6)

n = 2

Hydrogen H2

ln(KH) = −121.92 + 5528.5/T + 16.889 × ln(T)

(7.90 ± 0.04) × 10−4

(7)

n = 6

Carbon monoxide CO

ln(KH) = −178. 00 + 8750.0/T + 24.875 × ln(T)

(9.84 ± 0.05) × 10−4

n = 4

(8)

Methane CH4

ln(KH) = −211.28 + 10447.9/T + 29.780 × ln(T)

(1.407 ± 0.006) × 10−3

n = 5

(9)

Ethane C2H6

ln(KH) = −246.80 + 12695.6/T + 34.474 × ln(T)

(1.872 ± 0.014) × 10−3

n = 5

(10)

Propane C3H8

ln(KH) = −279.81 + 14435.5/T + 39.760 × ln(T)

(1.505 ± 0.06) × 10−3

n = 7

(11)

Butane C4H10

ln(KH) = −276.53 + 14604.4/T + 38.760 × ln(T)

(1.206 ± 0.032) × 10−3

n = 8

(11)

Isobutane (CH3)2CHCH3

ln(KH) = −371.92 + 18304.4/T + 53.465 × ln(T)

(8.94 ± 0.50) × 10−4

(11)

References

 (1) Clever, H.L. (ed.), IUPAC Solubility Data Series. Helium and Neon, vol. 1 (Pergamon Press, Oxford, 1979)

 (2) Clever, H.L. (ed.), IUPAC Solubility Data Series. Argon, vol. 4 (Pergamon Press, Oxford, 1980)

 (3) Clever, H.L. (ed.), IUPAC Solubility Data Series. Krypton, Xenon and Radon, vol. 2 (Pergamon Press, Oxford, 1979)

 (4) Battino, R. (ed.), IUPAC Solubility Data Series. Oxygen and Ozone, vol. 7 (Pergamon Press, Oxford, 1981)

 (5) Battino, R. (ed.), IUPAC Solubility Data Series. Nitrogen and Air, vol. 10 (Pergamon Press, Oxford, 1982)

 (6) Young, C.E. (ed.), IUPAC Solubility Data Series. Oxides of Nitrogen, vol. 8 (Pergamon Press, Oxford, 1981)

 (7) Young, C.E. (ed.), IUPAC Solubility Data Series. Hydrogen and Deuterium, vol. 5/6 (Pergamon Press, Oxford, 1981)

 (8) Rettich, T.R., R. Battino, E. Wilhelm, Ber. Bunsenges. Phys. Chem. 86, 1128–1132 (1982)

 (9) Clever, H.L., C.L. Young (eds.), IUPAC Solubility Data Series. Methane, vol. 27/28 (Pergamon Press, Oxford, 1987)

(10) Hayduk, W. (ed.), IUPAC Solubility Data Series. Ethane, vol. 9, (Pergamon Press, Oxford, 1982)

(11) Hayduk, W. (ed.), IUPAC Solubility Data Series. Propane, Butane, and 2-Methylpropane, vol. 24 (Pergamon Press, Oxford, 1986)
Table 8.24

Henry’s law coefficients KH (mol dm−3 atm−1) for atmospheric gases: parameters A and B in Eq. 8.2, temperature range, values at 25°C, references used for evaluation

Substance

A

B

ΔT(°C)

KH(298.15)

Ref a

Main atmospheric constituents

Nitrogen N2

12.59 ± 0.06

1,563 ± 16

0–30

(6.482 ± 0.054) × 10−4

(1–3, 8)

Oxygen O2

12.51 ± 0.02

1,738 ± 18

0–30

(1.246 ± 0.018) × 10−3

(1, 2) (4–8)

Argon Ar

12.22 ± 0.08

1,683 ± 22

0–30

(1.397 ± 0.003) × 10−3

(1, 2) (8, 9)

Several trace gases

Methane CH4

12.83 ± 0.24

1,864 ± 70

0–25

(1.407 ± 0.006) × 10−3

(10–13)

Carbon monoxide CO

11.44 ± 0.34

1,348 ± 101

0–40

(9.857 ± 0.006) × 10−4

(14, 15)

Nitrous oxide N2O

12.64 ± 0.37

2,665 ± 48

0–40

(2.42 ± 0.03) × 10−2

(16–23)

Oxidants

Ozone O3

12.45 ± 0.04

2,367 ± 68

0–40

(1.10 ± 0.25) × 10−2

(24)

Hydrogen peroxide H2O2

10.72 ± 0.54

6,605 ± 154

3–24

(9.17 ± 0.39) × 104

(25–29)

Methyl hydroperoxide, CH3OOH

11.79 ± 0.59

5,219 ± 145

4–25

(2.94 ± 0.36) × 102

(27, 29)

Ethyl hydroperoxide, C2H5OOH

14.28 ± 0.70

5,995 ± 200

5–25

(3.36 ± 0.20) × 102

(29)

Hydroxymethyl hydroperoxide, HOCH2OOH

18.04 ± 0.18

9,652 ± 53

5–25

(1.67 ± 0.35) × 106

(29)

Acetic peroxoic acid, CH3(CO)OOH

11.07 ± 2.34

5,308 ± 672

5–25

(8.37 ± 1.75) × 102

(29)

Nitrogen compounds

Nitric oxide NO

11.60 ± 0.37

1,598 ± 106

0–30

(1.95 ± 0.06) × 10−3

(30, 31)

Nitrogen dioxide NO2

 

no datab

 

(1.0 ± 0.3) × 10−2

(32, 33)

Acetonitrile CH3CN

 9.82 ± 0.30

4,106 ± 101

0–30

51.2 ± 3.0

(34)

Peroxyacetyl nitrate PAN, CH3C(O)OONO2

18.04 ± 0.30

5,701 ± 96

1–24

2.95 ± 0.11

(35, 36)

Peroxypropionyl nitrate C2H5C(O)OONO2

19.24 ± 0.11

5,941 ± 108

1–24

1.98 ± 0.04

(36)

Sulfur compounds

Carbonyl sulfide COS

14.78 ± 0.36

3,262 ± 104

0–30

(2.1 ± 0.8) × 10−2

(37, 39)

Carbon disulfide CS2

15.88 ± 0.28

3,902 ± 82

0–32

(6.2 ± 1.8) × 10−2

(38, 39)

Dimethyl sulfide CH3SCH3

12.34 ± 0.20

3,502 ± 57

0–35

0.565 ± 0.017

(40–42)

Sulfur hexafluoride SF6

18.60 ± 0.24

3,060 ± 71

3–30

(2.44 ± 0.02) × 10−4

(8, 43)

Carbonyl compounds

Formaldehyde HCHO

14.68 ± 0.60

6,775 ± 181

10–45

(3.2 ± 0.3) × 103

(44, 45)

Acetaldehyde CH3CHO

16.4 ± 0.1

5,671 ± 22

0–40

13.5 ± 1.5

(34)

Acetone CH3COCH3

14.4 ± 0.3

5,286 ± 100

0–45

27.8 ± 0.3

(34)

Glyoxal OHCCHO

13.69 ± 0.3

7,808 ± 556

2–55

(2.7 ± 0.6) × 105

(55)

(n = 10)

Alcohols

Methanol

12.46 ± 0.25

5,312 ± 76

0–80

(2.16 ± 0.14) × 102

(46)

(n = 8)

Ethanol C2H5OH

15.87 ± 0.82

6,274 ± 242

0–60

(1.94 ± 0.13) × 102 (n = 8)

(46)

Halogenated hydrocarbons

Chloromethane CH3Cl

13.16 ± 0.47

3,262 ± 139

0–50

(1.10 ± 0.05) × 10−1

(47)

(n = 2)

Dichloromethane CH2Cl2

13.23 ± 0.78

3,665 ± 230

10–40

(3.80 ± 0.55) × 10−1

(47)

(n = 4)

Trichloromethane CHCl3

15.63 ± 0.38

4,261 ± 112

2–50

(2.55 ± 0.17) × 10−1

(47)

(n = 6)

Tetrachloromethane CCl4

17.69 ± 0.40

4,284 ± 119

10–47

(3.53 ± 0.23) × 10−2

(47)

(n = 5)

Chloroethane C2H5Cl

11.88 ± 1.04

2,803 ± 305

10–35

(8.64 ± 0.53) × 10−2

(47)

(n = 2)

1,1-Dichloroethane CH3CHCl2

15.56 ± 0.74

4,121 ± 219

2–50

(1.79 ± 0.19) × 10−1

(47)

(n = 3)

1,2-Dichloroethane CH3ClCH2Cl

14.65 ± 0.56

4,340 ± 165

2–50

(8.5 ± 2.0) × 10−1

(47)

(n = 2)

1,1,1,-Trichloroethane CH3CCl3

15.19 ± 0.32

3,697 ± 96

1–60

(5.80 ± 0.54) × 10−2

(47)

(n = 6)

1,1,2-Trichloroethane CH2ClCHCl2

13.48 ± 0.40

4,060 ± 118

3–50

1.10 ± 0.10

(47)

1,1,1,2-Tetrachloroethane, CH2ClCCl3

16.36 ± 1.30

4,626 ± 394

20–40

(5.74 ± 0.20) × 10−1

(47)

(n = 2)(at 20°C)

1,1,2,2-Tetrachloroethane, CHCl2CHCl2

15.18 ± 0.94

4,784 ± 281

11–50

3.01 ± 0.37

(47)

Hexachloroethane C2Cl6

20.26

5,634

10–30

0.355

(48)

Chloroethene C2H3Cl

13.79 ± 0.66

3,144 ± 194

10–35

(3.69 ± 0.13) × 10−2

(47)

(n = 2)

1,1-Dichloroethene CH2CCl2

14.82 ± 0.65

3,440 ± 191

10–40

(3.85 ± 0.02) × 10−2

(47)

(n = 2)

cis-1,2-Dichloroethene CHClCHCl

15.10 ± 0.59

4,099 ± 176

10–40

(2.33 ± 0.18) × 10−1

(47)

(n = 2)

trans-1,2-Dichloro-ethene, CHClCHCl

15.64 ± 0.43

3,996 ± 130

10–46

(1.06 ± 0.01) × 10−1

(47)

(n = 2)

Trichloroethene CHCl3

16.99 ± 0.50

4,410 ± 147

1–60

(1.05 ± 0.08) × 10−1

(47)

(n = 7)

Tetrachloroethene C2Cl4

18.10 ± 0.30

4,573 ± 89

1–60

(6.09 ± 0.39) × 10−1

(47)

(n = 7)

Fluorine compounds

Trichlorofluoromethane, CFCl3

16.11 ± 0.42

3,449 ± 125

1–40

(1.11 ± 0.11) × 10−2

(49–53)

(n = 4)

Dichlorodifluoromethane, CF2Cl2

17.25 ± 0.22

3,420 ± 66

1–40

(3.03 ± 0.09) × 10−3

(48) (51–53)

(n = 3)

Tetrafluoromethane CF4

16.04 ± 0.21

2,258 ± 60

2.5–30

(2.09 ± 0.02) × 10−4

(8) (43, 54)

(n = 3)

Hexafluoroethane C2F6

19.34 ± 0.65

2,859 ± 189

5–30

(5.72 ± 0.06) × 10−5

54

aSee references below

bIn aqueous solution nitrogen dioxide undergoes the reactions 2NO2 = N2O4 followed by N2O4 + H2O = HNO2 + H+ + NO3

Table 8.25

Henry’s law coefficientsa for atmospheric constituents that react with water, parameters A and B in Eq. 8.2, temperature range, values at 25°C

Substance

A

B

ΔT(°C)

KH(298.15)

Ref.d

Carbon dioxide CO2

11.55

2,440

0–40

3.45 × 10−2

(1)

Sulfur dioxide SO2

10.66 ± 0.16

3,243 ± 36

0–50

1.24 ± 0.03

(2, 3)

Ammonia NH3

9,935

4,186

0–40

60.7

(4, 5)

Hydrochloric acidb HCl

15.29 ± 0.15

8,886 ± 43

0–40

2.04 × 106

(1, 6)

Nitric acidb HNO3

14.46 ± 0.13

8,694 ± 38

0–40

2.45 × 106

(1, 6)

Nitrous acid HNO2

−12.48 ± 0.13

4,912 ± 37

0–30

54.3

(7)

Formic acid HCOOH

11.4 ± 0.7

6,100 ± 200

2–35

(8.9 ± 1.3) × 103

(8)

Acetic acid CH3COOH

12.5 ± 0.4

6,200 ± 100

2–35

(4.1 ± 0.4) × 103

(8)

Glycolic acid CH2OHCOOH

3.03 ± 0.14

3,946 ± 548

5–35

(2.8 ± 0.4) × 104

(9)

Glyoxylic acidc OHCCOOH

7.56 ± 0.22

4,933 ± 838

5–35

(8.0 ± 0.2) × 103

(9)

aSee the additional comments below

bValues for hydrochloric acid and nitric acid, which are fully dissociated at pH ≥ 1, are not Henry’s law coefficients but equilibrium constants KHX (mol2 dm−6 atm−1) for the reaction pHX = X + H+

cGlyoxylic acid is essentially fully hydrated

dReferences: (1) Wagman et al. (1982a), (2) Maahs (1982), (3) Goldberg and Parker (1985),(4) Clegg and Brimblecombe (1989), (5) Dasgupta and Dong (1986), (6) Brimblecombe andClegg (1988), (7) Park and Lee (1988), (8) Johnson et al. (1996), (9) Ip et al. (2009)

Comments: Henry’s law coefficients in Table 8.25 refer to the equilibrium between the compound in the gas phase and the undissociated compound in solution. Dissociation adds one or two more coupled equilibria that must be taken into account. In the case of SO2, for example, the equilibria are
$$ {\rm{SO}}_{2\rm{gas}}\rightleftharpoons {\rm{SO}}_{2\rm{aq}}\rm\{K_{\rm{H}}$$
$${\rm{SO}}_{2\rm{aq}}\rightleftharpoons {\rm{H}}^{+}+{\rm{HSO}}_{3}\rm\{K_{1}$$
$$ {\rm{HSO}}_{3}{}^{-}\rightleftharpoons {\rm{H}}^{+}+{\rm{SO}}_{3}{}^{2-}\rm\{K_{2}$$
The total concentration of sulfite species in solution in equilibrium with SO2 in the gas phase depends on the hydrogen ion concentration [H+], which is generally determined by other factors
$$\left[{\rm{SO}}_{2\rm{aq}}\right]+\left[{\rm{HSO}}_{3}\right]+\left[{\rm{SO}}_{3}\right]={K}_{\rm{H}}p\left\{1+{K}_{1}/\left[{\rm{H}}^{+}\right]+{K}_{1}{K}_{2}/{\left[{\rm{H}}^{+}\right]}^{2}\right\}$$
Here, brackets are used to indicate concentrations in units of [mol dm−3]. Dissociation constants are listed in Table 8.26. For strong acids such as HCl and HNO3 that are fully dissociated in aqueous solution values for KH are not known. In these cases, the equilibrium constants are known only for the product of Henry’s law coefficient and dissociation constant
$${K}_{\rm{HX}}={K}_{\rm{diss}}{K}_{\rm{H}}=\left[{\rm{H}}^{+}\right]\left[{\rm{X}}^{-}\right]/{p}_{\rm{HX}}$$
where X is either Cl or NO3 and Kdiss denotes the dissociation constant. Values for KHX are entered in the above Table 8.25.

8.5 Chemical Equilibria in Aqueous Solution, Dissociation Constants

Aqueous dissociation reactions important to atmospheric chemistry include acid and base dissociation processes leading to the formation of ions, as well as hydration and other addition reactions. Ion reactions generally are rapid so that equilibria are always established, whereas hydration reactions approach equilibrium more slowly. Time constants for reaching equilibrium can be estimated from the rates of forward and reverse reactions. Unless indicated otherwise the following tables list equilibrium constants and reaction rates (as far as known) for dilute solutions. Ion dissociation equilibria depend on the presence of other ions in the system due to the action of Coulomb forces, which generally begin to influence the value of the equilibrium constant when total ion concentrations exceed 10−3 mol dm−3. The effect will be most pronounced in the concentrated solutions associated with aqueous aerosols so that appropriate caution must be exercised and suitable corrections applied when using ion dissociation constants in connection with aerosols. A commonly applied correction is the approximation suggested by Davies (1961): log Kcorr = log K0 + 2Azazb{(μ½/(1 + μ½)) − Cμ}, where za and zb are the charges of the ions involved, μ is the ionic strength defined by μ = ½Σ zi2ci, A ≈ 0.5, and C is an adjustable constant, with C = 0.2 being frequently applicable. This equation is said to be valid up to ionic strengths μ ≈ 0.1. (Davies 1961)
Table 8.26

Dissociation reactions in dilute aqueous solutions: equilibrium constants at 298.15 K; forward and reverse rate coefficients (units: mol, dm3, s−1); temperature dependence parameter B defined by K(T) = K298exp{−B[(1/T) − (1/298.15)]}

Reaction

K298

Ba

kf

kr

Ref.m

Inorganic species

\( {\rm{H}}_{2}\rm{O}\rightleftharpoons {\rm{H}}^{+}+{\rm{OH}}^{-}\)

1.0 × 10−14b

6,955

2.5 × 10−5c

1.4 × 1011

(1–3)

\({\rm{H}}_{2}{\rm{O}}_{2}\rightleftharpoons {\rm{H}}^{+}+{\rm{HO}}_{2}\)

2.0 × 10−12

3,710

 

d

(1, 2)

\({\rm{HO}}_{2}\rightleftharpoons {\rm{H}}^{+}+{\rm{O}}_{2}\)

1.6 × 10−5

1,350

 

d

(4)

\( \rm{OH}\rightleftharpoons {\rm{H}}^{+}+{\rm{O}}^{-}\)

1.3 × 10−12

2,045

 

d

(5)

\({\rm{CO}}_{\rm{2aq}}\rightleftharpoons {\rm{H}}^{+}+{\rm{HCO}}_{3}\) e

4.3 × 10−7

995

2.7 × 10−2 c

6.4 × 104

(2, 6)

\( {\rm{CO}}_{\rm{2aq}}+{\rm{OH}}^{-}\rightleftharpoons {\rm{HCO}}_{3}\) -e

4.25 × 107

−5,940

8.0 × 103

1.9 × 10−4c

(2, 6)

\( {\rm{HCO}}_{3}\rightleftharpoons {\rm{H}}^{+}+{\rm{CO}}_{3}\)

4.68 × 10−11

1,785

 

d

(1, 2)

\( {\rm{HNO}}_{2}\rightleftharpoons {\rm{H}}^{+}+{\rm{NO}}_{2}\)

7.0 × 10−4

1,755

 

d

(1, 2)

\( {\rm{HNO}}_{3}\rightleftharpoons {\rm{H}}^{+}+{\rm{NO}}_{3}\)

1.7 × 101

NA

 

d

(7)

\( \rm{HOONO}\rightleftharpoons {\rm{H}}^{+}+{\rm{ONO}}_{2}\) f

1.6 × 10−7

NA

 

d

(8)

\( {\rm{HOONO}}_{2}\rightleftharpoons {\rm{H}}^{+}+{\rm{O}}_{2}{\rm{NO}}_{2}\) f

1.3 × 10−6

NA

 

d

(9)

\( {\rm{NO}}_{2}+{\rm{NO}}_{2}\rightleftharpoons {\rm{N}}_{2}{\rm{O}}_{4}\) f

6.4 × 104

NA

4.5 × 108

7.0 × 103

(10)

\( {\rm{NH}}_{\rm{3aq}}\rightleftharpoons {\rm{OH}}^{-}+{\rm{NH}}_{4}\) e

1.77 × 10−5

710

6.0 × 105

3.4 × 1010

(3, 11)

\( \rm{HCN}\rightleftharpoons {\rm{H}}^{+}+{\rm{CN}}^{-}\)

6.2 × 10−10

5,230

 

d

(1, 2)

\( {\rm{SO}}_{\rm{2aq}}\rightleftharpoons {\rm{H}}^{+}+{\rm{HSO}}_{3}\) e

1.39 × 10−2

−1,870

2.8 × 106c

2.0 × 108

(3, 12)

\( {\rm{HSO}}_{3}\rightleftharpoons {\rm{H}}^{+}+{\rm{SO}}_{3}\)

6.72 × 10−8

−355

 

d

(12)

\( {\rm{HSO}}_{4}\rightleftharpoons {\rm{H}}^{+}+{\rm{SO}}_{4}\)

1.02 × 10−2

−2,445

1.5 × 109

1.0 × 1011

(1–3)

\( {\rm{HOOSO}}_{3}\rightleftharpoons {\rm{H}}^{+}{+}^{-}{\rm{OOSO}}_{3}\)

7.4 × 10−10

2,525

 

d

(13, 14)

\( {\rm{H}}_{2}\rm{S}\rightleftharpoons {\rm{H}}^{+}+{\rm{HS}}^{-}\)

1.0 × 10−7

2,660

4.3 × 103

7.5 × 1010

(1–3)

\( \rm{HOCl}\rightleftharpoons {\rm{H}}^{+}+{\rm{ClO}}^{-}\)

2.8 × 10−8

1,660

 

d

(2)

\( \rm{HOBr}\rightleftharpoons {\rm{H}}^{+}+{\rm{BrO}}^{-}\)

2.6 × 10−9

2,275

 

d

(2)

\( \rm{HOI}\rightleftharpoons {\rm{H}}^{+}+{\rm{IO}}^{-}\)

2.4 × 10−11

3,680

 

d

(2)

\( {\rm{H}}_{3}{\rm{PO}}_{4}\rightleftharpoons {\rm{H}}^{+}+{\rm{H}}_{2}{\rm{PO}}_{4}\)

\( {\rm{H}}_{2}{\rm{PO}}_{4}\rightleftharpoons {\rm{H}}^{+}+{\rm{HPO}}_{4}\)

7.1 × 10−3

960

 

d

(1)

\( {\rm{H}}_{2}{\rm{PO}}_{4}\rightleftharpoons {\rm{H}}^{+}+{\rm{HPO}}_{4}\)

4.5 × 10−13

−1,760

 

d

(1)

\({\rm{HPO}}_{4}\rightleftharpoons {\rm{H}}^{+}+{\rm{PO}}_{4}\)

6.3 × 10–8

– 400

d

(1)

 

\( {\rm{H}}_{4}{\rm{SiO}}_{4}\rightleftharpoons {\rm{H}}^{+}+{\rm{H}}_{3}{\rm{SiO}}_{4}\)

1.4 × 10−10

  

d

(1)

\( {\rm{Fe}}^{3+}+{\rm{H}}_{2}\rm{O}\rightleftharpoons \rm{Fe}{\left(\rm{OH}\right)}^{2+}+{\rm{H}}^{+}\)

6.73 × 10−3

−5,230

 

d

(1)

\( {\rm{Fe}}^{3+}+{\rm{SO}}_{4}\rightleftharpoons \rm{Fe}{\left({\rm{SO}}_{4}\right)}^{+}\)

1.4 × 104

−3,120

2.3 × 105g

1.6 × 101c

(1, 15)

\( {\rm{Fe}}^{3+}+{\rm{C}}_{2}{\rm{O}}_{4}\rightleftharpoons \rm{Fe}{\left({\rm{C}}_{2}{\rm{O}}_{4}\right)}^{+}\)

4.0 × 107h

NA

2.0 × 104g,h

5.0 × 10−4c

(1, 15)

\( \rm{Fe}{\left({\rm{C}}_{2}{\rm{O}}_{4}\right)}^{+}+{\rm{C}}_{2}{\rm{O}}_{4}\rightleftharpoons \rm{Fe}{\left({\rm{C}}_{2}{\rm{O}}_{4}\right)}_{2}\)

1.1 × 106h,i

NA

  

(1)

\( \rm{Fe}{\left({\rm{C}}_{2}{\rm{O}}_{4}\right)}_{2}+{\rm{C}}_{2}{\rm{O}}_{4}\rightleftharpoons \rm{Fe}{\left({\rm{C}}_{2}{\rm{O}}_{4}\right)}^{3-}\)

7.1 × 104h,i

NA

  

(1)

Organic compounds

\( \rm{HCOOH}\rightleftharpoons {\rm{H}}^{+}+{\rm{HCOO}}^{-}\)

1.8 × 10−4

−20

9.0 × 106 c

5.0 × 1010

(1, 3)

\( {\rm{CH}}_{3}\rm{COOH}\rightleftharpoons {\rm{H}}^{+}+{\rm{CH}}_{3}{\rm{COO}}^{-}\)

1.75 × 10−5

−50

7.9 × 105 c

4.5 × 1010

(1, 3)

\( {\rm{CH}}_{3}\rm{C}\left(\rm{O}\right)\rm{OOH}\rightleftharpoons {\rm{H}}^{+}+{\rm{CH}}_{3}{\rm{CO}}_{3}\)

1.1 × 10−8 j

NA

 

d

(16)

\( {\rm{C}}_{2}{\rm{H}}_{5}\rm{COOH}\rightleftharpoons {\rm{H}}^{+}+{\rm{C}}_{2}{\rm{H}}_{5}{\rm{COO}}^{-}\)

1.34 × 10−5

−100

 

d

(1, 3)

\(\begin{array}{l}{\rm{HOCH}}_{2}\rm{COOH}\rightleftharpoons \rm{H}^{+}+{\rm{HOCH}}_{2}{\rm{COO}}^{-}\end{array}\)

1.48 × 10−4

80

 

d

(1)

\( \begin{array}{l}{\left(\rm{HO}\right)}_{2}\rm{CHCOOH}\rightleftharpoons \\ \rm{\rm{H}}^{+}+{\left(\rm{HO}\right)}_{2}{\rm{CHCOO}}^{-}\end{array}\)

3.47 × 10−4

265

 

d

(1)

\( {\left(\rm{HO}\right)}_{2}\rm{CHCOOH}\rightleftharpoons \rm{OCHCOOH}\)

3.33 × 10−3

NA

2.5 × 10−2

7.5

(17)

\( {\left(\rm{HO}\right)}_{2}{\rm{CHCOO}}^{-}\rightleftharpoons {\rm{OCHCOO}}^{-}\)

6.6 × 10−2

NA

5.5 × 10−3

8.3 × 10−2

(17)

\( \begin{array}{l}{\rm{CH}}_{3}\rm{CHOHCOOH}\rightleftharpoons \rm{}\\ \rm{\rm{H}}^{+}+{\rm{CH}}_{3}{\rm{CHOHCOO}}^{-}\end{array}\)

1.38 × 10−4

40

 

d

(1)

\( \begin{array}{l}{\rm{CH}}_{3}\rm{COCOOH}\rightleftharpoons \rm{}\\ \rm{\rm{H}}^{+}+{\rm{CH}}_{3}{\rm{COCOO}}^{-}\end{array}\)

3.37 × 10−3

1,540

 

d

(18)

\( {\rm{H}}_{2}\rm{C}{\left(\rm{OH}\right)}_{2}\rightleftharpoons \rm{HCHO}\left(+{\rm{H}}_{2}\rm{O}\right)\)

4.5 × 10−4

4,030

5.1 × 10−3

12.8k

(19, 20)

\( {\rm{CH}}_{3}\rm{CH}{\left(\rm{OH}\right)}_{2}\rightleftharpoons {\rm{CH}}_{3}\rm{CHO}\)

9.5 × 10−1

1,220

4.2 × 10−3

4.3 × 10−3k

(21)

\( {\rm{HOCH}}_{2}\rm{CH}{\left(\rm{OH}\right)}_{2}\rightleftharpoons {\rm{HOCH}}_{2}\rm{CHO}\)

1.1 × 10−1

NA

9.6 × 10−3

8.6 × 10−2

(17)

\( \begin{array}{l}{\rm{HSO}}_{3}+{\rm{H}}_{2}\rm{C}{\left(\rm{OH}\right)}_{2}\rightleftharpoons \\ \rm\rm\rm{\rm{H}}_{2}\rm{C}\left(\rm{OH}\right){\rm{SO}}_{3}\end{array}\)

3.6 × 106

6,570

2.0 × 10−1l

5.6 × 10−8 c

(22–24)

\( \begin{array}{l}{\rm{SO}}_{3}+{\rm{H}}_{2}\rm{C}{\left(\rm{OH}\right)}_{2}\rightleftharpoons \\ \rm\rm\rm{\rm{H}}_{2}\rm{C}\left(\rm{OH}\right){\rm{SO}}_{3}+{\rm{OH}}^{-}\end{array}\)

5.4 × 10−1

 

2.4 × 103 l

4.5 × 103

(23–25)

aTemperature range 0–35°C; Values are accurate to ±50 K. They were calculated from the heat of reaction ΔH (298.15) and the change with heat capacity at other temperatures if such data were available; NA not available

bThis value of the equilibrium constant corresponds to the product Kw = [H+][OH]. The true equilibrium constant is K = Kw/[H2O] = 1.8 × 10−16, and kf is calculated accordingly

cThe rate coefficient was calculated from the equilibrium constant and the counter reaction

dRates of ion recombination reactions are at the diffusion-controlled limit. In analogy to other reactions listed, one may assume a value of ∼5 × 1010 dm3 mol−1 s−1 if direct measurements are lacking

eIn aqueous solution CO2, SO2 and NH3 exist as physically dissolved gases as well as carbonic acid, sulfurous acid, and ammonium hydroxide, respectively. Thus, [CO2aq] = [CO2⋅H2O] + [H2CO3]; [SO2aq] = [SO2⋅H2O] + [H2SO3]; [NH3aq] = [NH3⋅H2O] + [NH4OH]

fHOONO is unstable and decomposes in acidic solution to form nitrate. The product O2NO2 decomposes toward NO2 + O2. The dimer N2O4 reacts with water to form HNO2 and HNO3

gOne cannot distinguish between the reaction path shown and the reactions of HSO4 or HC2O4 with Fe(OH)2+

hData refer to ionic strength μ = 0.5

iRecalculated from the original data, which refer to Fe3+ + 2 C2O42− and Fe3+ + 3 C2O42−, respectively

jData refer to T = 285 K and ionic strength μ = 0.5

kFirst order rate constant, pH range 4–6. Forward and reverse reactions are catalyzed by protons and hydroxyl ions, so that they increase somewhat at higher and lower pH

lThe formation of hydroxyl-methane-sulfonate proceeds via non-hydrated formaldehyde, HCHO. Reaction rates are defined as kHCHO × [HCHO]/{[H2C(OH)2] + [HCHO]}

Table 8.27

Dissociation constants for dicarboxylic acids in dilute aqueous solution: equilibrium constants at 298.15 K; temperature parameter B defined by K(T) = K298exp-B[(1/T)-(1/298.15)]a

Reaction

K298 (1st)

B

K298 (2nd)

B

Ethanedioic (oxalic) acid, HOOCCOOH

5.59 × 10−2

−455

5.42 × 10−5

−805

Propanedioic (malonic) acid, HOOCCH2COOH

1.42 × 10−3

20

2.01 × 10−6

−580

Methylpropanedioic acid, HOOCCH(CH3)COOH

9.77 × 10−4

 

1.74 × 10−6

 

Butanedioic (succinic) acid, HOOC(CH3)2COOH

6.21 × 10−5

350

2.31 × 10−6

−55

Methylbutanedioic acid, HOOCCH2CH(CH3)COOH

7.94 × 10−5

 

1.62 × 10−6

 

Hydroxybutanedioic (malic) acid, HOOCCH2CHOHCOOH

3.48 × 10−4

360

8.00 × 10−6

−140

Pentanedioic (glutaric) acid, HOOC(CH2)3COOH

4.57 × 10−5

−50

3.71 × 10−6

−300

Hexanedioic (adipic) acid HOOC(CH2)4COOH

3.80 × 10−5

−150

3.80 × 10−6

−300

Heptanedioic (pimelic) acid, HOOC(CH2)5COOH

3.24 × 10−5

−150

3.72 × 10−6

−450

Nonanedioic (azelaic) acid HOOC(CH2)7COOH

2.82 × 10−5

 

3.80 × 10−6

 

cis-Butenedioic (maleic) acid, HOOCCH = CHCOOH

1.23 × 10−2

50

4.65 × 10−7

−400

trans-Butenedioic (fumaric) acid, HOOCCH = CHCOOH

8.85 × 10−4

50

3.21 × 10−6

−350

1,2-Benzene dicarboxylic (phtalic) acid, C6H4(COOH)2

1.12 × 10−3

−320

3.91 × 10−6

−250

aData assembled from Smith and Martell (1976)

8.6 Aqueous Phase Photochemical Processes

The following tables provide absorption coefficients and quantum yields for several photochemical processes in the aqueous phase that have been recognized to participate in the chemistry of atmospheric aqueous systems. The first table gives an overview on important processes. The other tables present the decadic absorption coefficient, ε (dm3 mol−1 cm−1), the corresponding absorption cross section σ (cm2 molecule−1) and the quantum yield ϕ for radicals resulting from the photochemical process if wavelength-dependent. Absorption coefficients are defined by ε = (1/cd) × log(I0/I) and σ = (1/nd)ln(I0/I), where c is the concentration (mol dm−3), n is the number density (molecule cm−3), I0 and I are the incident and transmitted monochromatic light intensities, respectively, for an optical path length d and uniform concentration of the absorbing compound.
Table 8.28

Summary of aqueous photochemical processes: photolysis frequency j (s−1), radical quantum yield, wavelength or wavelength range of measurement.

Reaction/ratea

ϕ

λ, Δλ/nm

Ref.

H2O2 + → OH + OHb

1.0

254

(2)

j = 1.0 × 10−5

0.98, 0.96c

308, 351

(3)

NO3 + (+H+) → NO2 + OH

0.0092

305

(4)

j = 5.6 × 10−7

0.017

308

(3)

0.013–0.017

313

(5)

NO2 + (+H+) → NO + OH

0.023–0.068d

280–390

(6)

j = 3.8 × 10−5

HNO2 + → NO2 + OH

0.46, 0.45

254, 365

(7)

j = 6.7 × 10−4

0.35c

280–390

(6)

Fe(OH)2+ + → Fe2+ + OH

0.105

340

(8)

j = 5.2 × 10−3

0.14, 0.017

313, 360

(9)

0.074–0.320d

280–370

(10)

Fe(SO4)+ + → Fe2+ + SO4

(1.75–7.5) × 10−3d

280–350

(10)

j = 1.0 × 10−4

Fe(C2O4) x n +

0.62c, x = 3

250–400

(11)

Fe2+ + C2O4 + (x-1)C2O42−e

∼0.6, x = 2

313

(12)

j = 6.2 × 10−2

aPhotolysis frequencies from Warneck et al. (1996); (1) Buxton and Wilmarth (1963), (2) Zellner et al. (1990), (3) Warneck and Wurtzinger (1988), (4) Zepp et al. (1987), (5) Fischer and Warneck (1996), (6) Alif and Boule (1991), (7) David and David (1976), (8) Faust and Hoigné (1990),(9) Benkelberg and Warneck (1995), (10) Hatchard and Parker (1956), (11) Zuo and Hoigné (1992)

bThe OH quantum yield is twice the quantum yield for dissociation

cEssentially independent of wavelength

dFor details see the following tables

eThree Fe(III)-oxalato complexes exist: x = 1, 2, 3, with charge numbers n = (3 − 2x)+. Photodecomposition of Fe(C2O4)33− in sulfuric acid solution is widely used as an actinometer with a quantum yield of Fe2+ formation φprod = 1.24, essentially independent of wavelength between 250 and 400 nm. The radical quantum yields shown take into account the subsequent reaction C2O4 + Fe(C2O4) x n → Fe2+ + xC2O42− + 2CO2, which raises the Fe2+ quantum yield by a factor of two. No data exist for the Fe(C2O4)+ complex

Table 8.29

Absorption coefficients (ε (M−1 cm−1), σ (cm2 molecule−1)) for aqueous hydrogen ­peroxide and nitrate anion as function of wavelength (nm)a

λ

H2O2

NO3

λ

H2O2

NO3

ε

1020σ

ε

1020σ

ε

1020σ

ε

1020σ

280

5.23

2.00

3.73

1.43

320

0.52

0.20

3.17

1.21

285

3.92

1.50

4.75

1.81

325

0.42

0.16

1.80

0.69

290

2.96

1.13

5.82

2.23

330

0.31

0.12

0.87

0.33

295

2.28

0.87

6.75

2.58

335

0.24

0.09

0.37

0.14

300

1.73

0.66

7.24

2.77

340

0.18

0.07

0.153

0.058

305

1.28

0.49

7.06

2.70

345

0.13

0.05

0.069

0.026

310

0.97

0.37

6.20

2.37

350

0.08

0.03

0.028

0.011

315

0.73

0.28

4.77

1.82

     

aFor quantum yields see Table 8.28

Table 8.30

Absorption coefficients for nitrite and nitrous acid, quantum yields for the process NO2 + (+H+) → NO + OH as a function of wavelengtha

λ (nm)

Nitrite anion, NO2

ϕ

Nitrous acid, HNO2a

ε (M−1 cm−1)

1020σ (cm2 molecule−1)

ε (M−1 cm−1)

1020σ (cm2 molecule−1)

280

7.97

3.05

0.0678

0.96

0.37

285

8.31

3.17

0.0677

0.97

0.37

290

8.50

3.25

0.0675

1.08

0.41

295

8.65

3.31

0.0672

1.41

0.54

300

8.80

3.36

0.0667

2.11

0.81

305

9.05

3.46

0.0659

2.77

1.06

310

9.45

3.61

0.0646

3.79

1.45

315

10.09

3.86

0.0626

5.38

2.06

320

11.14

4.26

0.0595

7.21

2.76

325

12.59

4.81

0.0554

10.39

3.98

330

14.61

5.59

0.0501

12.95

4.97

335

16.66

6.37

0.0443

18.46

7.08

340

18.91

7.23

0.0387

20.38

7.81

345

20.88

7.98

0.0338

27.94

10.71

350

22.29

8.52

0.0301

26.35

10.10

355

22.71

8.68

0.0275

36.24

13.90

360

21.79

8.33

0.0258

37.76

14.48

365

19.66

7.52

0.0247

31.03

11.90

370

16.48

6.30

0.0240

41.78

16.02

375

12.64

4.83

0.0236

29.50

11.31

380

8.91

3.41

0.0234

20.39

7.82

385

5.67

2.17

0.0232

24.72

9.48

390

3.13

1.20

0.0231

15.63

5.98

395

1.39

0.53

0.0231

3.71

1.42

400

0.45

0.17

0.0230

0.69

0.26

aThe quantum yield for decomposition of nitrous acid is constant over the entire wavelength range with ϕ = 0.35 ± 0.02 (see Table 8.28). Source of data: Fischer and Warneck (1996a)

Table 8.31

Absorption coefficients (ε (M−1 cm−1), σ (cm2 molecule−1)) and quantum yields for the processes Fe(OH)2+ + → Fe2+ + OH and Fe(SO4)+ + → Fe2+ + SO4 as a function of wavelength (nm)a

λ

Fe(OH)2+

Fe(SO4)+

ε

1018σ

ϕ

ε

1018σ

ϕ

280

1,717

6.564

0.312

1,552

5.933

0.0073

290

1,958

7.485

0.288

1,722

6.583

0.0060

300

1,985

7.588

0.218

1,852

7.080

0.0042

310

1,826

6.981

0.195

1,800

6.881

0.0034

320

1,565

5.983

0.160

1,552

5.933

0.0031

330

1,244

4.756

0.134

1,187

4.538

0.0022

340

920

3.517

0.112

822

3.142

0.0018

350

631

2.412

0.085

522

1.995

0.0015

360

431

1.648

0.073

   

370

257

0.983

0.074

   

aSource of data: Benkelberg and Warneck (1995)

8.7 Rate Coefficients for Elementary Reactions in the Aqueous Phase

Rate coefficients for aqueous phase reactions are given in units (dm3 mol−1 s−1). The temperature dependence, if known, is expressed by k(T) = k298exp{−B[(1/T) − (1/298.15)]}. The parameter B is related to the activation energy Ea by B = Ea/Rg, where Rg is the gas constant.
Table 8.32

Basic chemistry involving HO x and COx reactions

Reaction

k 298

B

Ref.

\( {e}_{\rm{aq}}^{-}+{\rm{O}}_{2}\to {\rm{O}}_{2}\)

2.0 × 1010

 

(1)

\( {e}_{\rm{aq}}^{-}+{\rm{H}}^{+}\to \rm{H}\)

2.2 × 1010

 

(1)

H + O2 → HO2

2.0 × 1010

 

(1)

HO2 + HO2 → H2O2 + O2

8.3 × 105

2,480

(1, 2)

HO2 + O2 (+ H+) → H2O2 + O2

9.7 × 107

980

(1, 2)

OH + HO2 → O2 + H2O

1.0 × 1010

 

(3)

OH + O2 → OH + O2

1.1 × 1010

2,120

(3)

OH + OH → H2O2

5.5 × 109

 

(4)

OH + H2 → H + H2O

4.2 × 107

2,290

(4)

OH + H2O2 → HO2 + H2O

2.7 × 107

1,680

(4)

O3 + O2 → O3 + O2

1.5 × 109

 

(5)

\( {\rm{O}}_{3}+{\rm{H}}^{+}\rightleftharpoons {\rm{HO}}_{3}\)

5.2 × 1010/3.3 × 102

 

(5)

HO3 → OH + O2

1.1 × 105

 

(5)

O3 + OH → HO2 + O2

1.1 × 108

 

(4)

OH + HCOOH → CO2 + H + H2O

1.2 × 108

990

(4, 6)

OH + HCOO → CO2 + H2O

3.1 × 109

1,240

(4, 6)

OH + HCO3 → CO3 + H2O

1.0 × 107

1,900

(4, 7)

OH + CO32− → CO3 + OH

3.9 × 108

2,840

(4, 7)

CO3 + O2 (+ H+) → HCO3 + O2

6.5 × 108

 

(8)

CO3 + H2O2 → HCO3 + HO2

4.3 × 105

 

(8)

CO3 + HCOO → HCO3 + CO2

1.5 × 105

 

(8)

CO2 + O2 → O2 + CO2

2.4 × 109

 

(1)

Table 8.33

Reactions involving sulfur species

Reaction

k 298

B

Ref.

O3 + SO2 + H2O → HSO4 + O2 + H+

2.4 × 104

 

(1)

O3 + HSO3 → HSO4 + O2

3.7 × 105

5,530

(1)

O3 + SO32− → SO42− + O2

1.5 × 109

5,280

(1)

HSO3 + H2O2 → SO42− + H+ + H2O

9.1 × 107 [H+]a

3,570

(2)

HSO3 + CH3OOH → HSO4 + CH3OH

1.9 × 107 [H+]a

3,800

(3)

HSO3 + CH3C(O)OOH → HSO4 + CH3COOH

4.5 × 107 [H+]a

3,990

(3)

HSO3 + HOONO2 → HSO4 + NO3 + H+

1.1 × 107 [H+] + 3.3 × 105a,b

 

(4)

HSO3 + HOONO → HSO4 + HNO2

2.0 × 107 [H+] + 4.0 × 104a

 

(5)

HSO3 + HSO5 → 2 HSO4

6.2 × 106 [H+] + 189a

 

(6)

SO32− + HSO5 → 2 SO42− + H+

2.3 × 103

 

(6)

OH + HSO3 → SO3 + H2O

2.7 × 109

 

(7)

OH + SO32− → SO3 + OH

4.6 × 109

 

(7)

OH + HSO5 → SO5 + H2O

1.7 × 107

 

(8)

\( \rm{OH}+{\rm{HSO}}_{4}\rightleftharpoons {\rm{SO}}_{4}+{\rm{H}}_{2}\rm{O}\)

7.0 × 105/6.6 × 102 (s−1)

 

(8, 9)

SO3 + O2 → SO5

2.5 × 109

 

(7)

SO5 + HSO3 → HSO5 + SO3

8.6 × 103

 

(7)

SO5 + HSO3 → HSO4 + SO4

3.6 × 102

 

(7)

SO5 + SO32− (+ H+) → HSO5 + SO3

2.1 × 105

 

(7)

SO5 + SO32− → SO42− + SO4

5.5 × 105

 

(7)

SO5 + SO5 → S2O82− + O2

4.8 × 107

 

(7)

SO5 + HO2 → HSO5 + O2

1.8 × 109

 

(10)

SO5 + O2 (+ H+) → HSO5 + O2

2.3 × 108

 

(7)

SO4 + HSO3 → HSO4 + SO3

6.8 × 108

 

(7)

SO4 + SO32− → SO42− + SO3

3.1 × 108

 

(7)

SO4 + H2O2 → HSO4 + HO2

1.2 × 107

 

(11)

SO4 + S2O82− → S2O8 + SO42−

<1.5 × 103

 

(9)

SO4 + OH → SO42− + OH

1.4 × 107

 

(12)

SO4 + HO2 → HSO4− + O 2

3.0 × 109

 

(13)

\( {\rm{SO}}_{4}+{\rm{NO}}_{3}\rightleftharpoons {\rm{SO}}_{4}+{\rm{NO}}_{3}\)

5.0 × 104/1.8 × 105

 

(13, 14)

SO4 + NO2 → SO42− + NO2

9.8 × 108

 

(11)

SO4 + HCO3 → SO42− + H+ + CO3

2.8 × 106

 

(15)

NO3 + SO2 (+ H2O) → SO3 + NO3 + 2 H+

2.3 × 108

3,700

(14)

NO3 + HSO3 → SO3 + NO3 + H+

1.3 × 109

2,000

(14)

NO3 + SO32− → SO3 + NO3

3.0 × 108

 

(14)

HSO3 + HCHO → HOCH2SO3

4.5 × 102

2,660

(16)

SO32− + HCHO (+ H+) → HOCH2SO3

5.4 × 106

2,530

(16)

HOCH2SO3 + OH → CH2(OH)2 + SO32−

4.6 × 103

4,880

(17)

OH + HOCH2SO3 → HOCHSO3 + H2O

3.0 × 108

 

(18)

\( {\rm{HOCHSO}}_{3}\rightleftharpoons {\rm{}}^{-}{\rm{OCHSO}}_{3}+{\rm{H}}^{+}\)

5.9 × 104/4.4 × 1010

 

(18)

HOCHSO3 + O2 → O2CH(OH)SO3

1.6 × 109

 

(18)

OCHSO3 + O2 → O2 + OCHSO3

2.6 × 109

 

(18)

O2CH(OH)SO3 → O2CHO + HSO3

7.0 × 103 (s−1)

 

(19)

O2CH(OH)SO3 → HO2 + OCHSO3

1.7 × 104 (s−1)

 

(18)

O2CHO (+ H2O) → HO2 + HCOOH

2.5 × 103 (s−1)

 

(18)

OCHSO3 (+ H2O) → HCOOH + HSO3

3.4 (s−1)

 

(18)

SO4 + HOCH2SO3 → products

1.3 × 106

 

(18)

NO3 + HOCH2SO3 → products

4.2 × 106

 

(19)

aThe reaction is proton-catalyzed as well as general-acid-catalyzed. In dilute solutions H2O assumes the role of an acid, so that the rate coefficient: k = kp [H+] + ka [H2O] consists of two terms. If the contribution of the second term is negligible, it is not shown

bAt T = 285 K, μ = 1.0 M NaClO4

Table 8.34

Reactions involving nitrogen species

Reaction

k 298

B

Ref.a

\( {\rm{2 NO}}_{2}\rightleftharpoons {\rm{N}}_{2}{\rm{O}}_{4}(+{\rm{H}}_{2}\rm{O})\to {\rm{HNO}}_{2}+{\rm{NO}}_{3}+{\rm{H}}^{+}\)

8.4 × 107

 

(1)

\( \rm{NO}+{\rm{NO}}_{2}\rightleftharpoons {\rm{N}}_{2}{\rm{O}}_{3}(+{\rm{H}}_{2}\rm{O})\rightleftharpoons {\rm{2 HNO}}_{2}\)

1.6 × 108/13.4

 

(1)

NO3 + NO2 → N2O5 (+ H2O → 2NO3 + 2 H+)

1.7 × 109

 

(2)

2 NO + O2 → 2 NO2

2.1 × 106

 

(3)

O2 + NO → ONOO

6.7 × 109

 

(4)

OH + NO2 → HOONO

4.5 × 109

 

(5)

HOONO → H+ + NO3

1.0 (s−1)

 

(5)

OH + NO2 → NO2 + OH

6.0 × 109

 

(5)

NO2 + O3 → NO3 + O2

5.0 × 105

7,000

(6)

HO2 + NO2 → O2NOOH

1.8 × 109

 

(7)

O2 + NO2 → O2NOO

4.5 × 109

 

(7)

O2NOOH → HNO2 + O2

7.0 × 10−4

 

(7)

O2NOO → NO2 + O2

1.0 (s−1)

 

(7)

O2NOOH + HNO2 → 2 H+ + 2NO3

12.0

 

(7)

NO3 + OH → NO3 + OH

1.4 × 107

2,700

(8)

NO3 + HO2 → NO3 + H+ + O2

3.0 × 109

 

(9)

NO3 + NO2 → NO3 + NO2

1.5 × 109

 

(10)

Table 8.35

Reactions involving metal ion species

Reaction

k 298

B

Ref.

OH + Fe2+ → FeOH2+

4.3 × 108

1,100

(1)

HO2 + Fe2+ (+H2O) → FeOH2+ + H2O2

1.2 × 106

5,050

(2, 3)

O2 + Fe2+ (+ H2O, H+) → FeOH2+ + H2O2

1.0 × 107

 

(2, 3)

HO2 + FeOH2+ → Fe2+ + O2 + H2O

1.0 × 104

 

(2, 3)

O2 + FeOH2+ → Fe2+ + O2 + OH

1.5 × 108

 

(2, 3)

Fe2+ + H2O2 → FeOH2+ + OH

7.6 × 101

 

(4)

Fe2+ + O3 → FeO2+ + O2

8.5 × 105

4,690

(5)

FeO2+ + H2O → FeOH2+ + OH

1.3 × 10−2

4,090

(5)

FeO2+ + H2O2 → FeOH2+ + HO2

9.5 × 103

2,770

(5)

FeO2+ + OH (+H2O) → FeOH2+ + H2O2

1.0 × 107

 

(5)

FeO2+ + HO2 → FeOH2+ + O2

2.0 × 106

 

(5)

FeO2+ + HNO2 → FeOH2+ + O2

1.1 × 104

 

(5)

FeO2+ + Cl (+H2O) → FeOH2+ + HOCl

1.0 × 102

 

(5)

FeO2+ + SO2aq (+H2O) → FeOH2+ + SO3 + H+

4.5 × 105

 

(5)

FeO2+ + HSO3 → FeOH2+ + SO3

2.5 × 105

 

(5)

FeO2+ + Mn2+ (+ H2O) → FeOH2+ + MnOH2+

1.0 × 104

2,560

(5)

FeOH2+ + HSO3 → Fe2+ + SO3 + H2O

4.0 × 101

8,300

(6)

Fe2+ + HSO5 → FeOH2+ + SO4

3.1 × 104

 

(7)

Fe2+ + S2O82− → FeOH2+ + SO42− + SO4

1.7 × 101

 

(8)

Fe2+ + SO4 (+ H2O) → FeOH2+ + H+ + SO42−

1.1 × 109

−2,165

(8)

Fe2+ + SO5 (+ H2O) → FeOH2+ + HSO5

8.0 × 105 a

 

(9)

Fe2+ + NO3 (+ H2O) → FeOH2+ + NO3 + H+

8.0 × 106

 

(10)

FeOH2+ + Cu+ → Cu2+ + Fe2+ + OH

3.0 × 107

 

(11, 12)

Cu+ + OH → Cu++ + OH

3.0 × 109

 

(13)

Cu++ + OH → CuOH++

3.1 × 108

 

(1)

Cu+ + HO2 (+ H+) → Cu2+ + H2O2

2.3 × 109

 

(2)

Cu+ + O2 (+ 2 H+) → Cu2+ + H2O2

9.4 × 109

 

(14)

Cu2+ + HO2 → Cu+ + H+ + O2

5.0 × 107

 

(2)

\( {\rm{Cu}}^{2+}+{\rm{O}}_{2}\rightleftharpoons {\rm{Cu}}^{+}+{\rm{O}}_{2}\)

8.0 × 109/4.6 × 105

 

(12, 14)

Cu+ + H2O2 → Cu+·H2O2

4.1 × 103

 

(15)

Cu+·H2O2 → Cu2+ + OH + OH

1.0 × 102 b

 

(15)

Cu+ + O3 (+ H2O) → Cu2+ + OH + OH

3.0 × 107

 

(16)

MnOH2+ + Fe2+ → Mn2+ + FeOH2+

1.5 × 104

 

(17)

Mn2+ + OH → MnOH2+

3.0 × 107

 

(1)

\( {\rm{Mn}}^{2+}+{\rm{O}}_{2}\rightleftharpoons {\rm{MnO}}_{2}\)

1.5 × 108/6.5 × 103

 

(18)

\( {\rm{Mn}}^{2+}+{\rm{HO}}_{2}\rightleftharpoons {\rm{MnO}}_{2}+{\rm{H}}^{+}\)

1.1 × 106/6.5 × 106

 

(18)

MnO2+ + HO2 (+H+) → Mn2+ + H2O2 + O2

1.0 × 107

 

(18)

MnOH2+ + H2O2 → MnO2+ + H+ + H2O

2.8 × 103

 

(18)

Mn2+ + O3 → MnO2+ + O2

1.5 × 103

4,750

(19)

MnO2+ + Mn2+ (+H2O) → 2MnOH2+

≥1.0 × 105

 

(19)

Mn2+ + SO4 (+ H2O) → MnOH2+ + H+ + SO42−

2.6 × 107

4,090

(8)

Mn2+ + SO5 (+ H2O) → products

4.6 × 106

 

(20)

Mn2+ + NO3 (+ H2O) → products

1.5 × 106

 

(10)

a The reaction proceeds via an intermediate complex: Fe(H2O) + SO5 ⇋ Fe(H2O)(SO5)+ → Fe(OH)2+ + HSO 5. Herrmann et al. (1996) reported a rate coefficient 4.3 × 107 (20), which presumably refers to the first step of the overall process

b The extent of the reaction leading to OH radicals is not exactly known. The value given was derived by Moffet and Zika (1987)

Table 8.36

Reactions involving halogen species

Reaction

k 298

B

Ref.

Chlorine species

\( {\rm{SO}}_{4}+{\rm{Cl}}^{-}\rightleftharpoons {\rm{SO}}_{4}+\rm{Cl}\)

2.5 × 108/2.1 × 108

 

(1)

\( \rm{Cl}+{\rm{Cl}}^{-}\rightleftharpoons {\rm{Cl}}_{2}\)

8.5 × 109/6.0 × 104

 

(2)

\( \rm{OH}+{\rm{Cl}}^{-}\rightleftharpoons {\rm{HOCl}}^{-}\)

4.3 × 109/6.1 × 109

 

(3)

\( {\rm{NO}}_{3}+{\rm{Cl}}^{-}\rightleftharpoons {\rm{NO}}_{3}+\rm{Cl}\)

3.4 × 108/1.0 × 108

 

(4)

\( {\rm{HOCl}}^{-}+{\rm{H}}^{+}\rightleftharpoons \rm{Cl}+{\rm{H}}_{2}\rm{O}\)

5.0 × 1010/2.5 × 105

 

(5)

Cl + NO2 → Cl + NO2

5.0 × 109

 

(5)

Cl + HCO3 → Cl + H+ + CO3

2.4 × 109

 

(5)

Cl2 + HO2 → 2 Cl + H+ + O2

3.0 × 109

 

(6)

Cl2 + O2 → 2 Cl + O2

6.0 × 109

 

(7)

Cl2 + H2O → 2Cl + H+ + OH

1.3 × 103 (s−1)

 

(2)

Cl2 + HSO3 → 2 Cl + H+ + SO3

2.0 × 108

1,080

(8, 9)

Cl2 + SO32− → 2 Cl + SO3

6.2 × 107

 

(9)

Cl2 + NO2 → 2 Cl + NO2

2.5 × 108

 

(6)

Cl2 + HCOOH → 2 Cl + 2 H+ + CO2

6.7 × 103

 

(6)

Cl2 + HCOO → 2 Cl + H+ + CO2

1.9 × 106

 

(6)

Cl2 + H2O2 → 2 Cl + H+ + HO2

1.4 × 105

 

(6)

Cl2 + Cl2 → 2 Cl + Cl2

7.0 × 108

 

(10)

Cl + HOCl + H+ → Cl2 + H2O

2.84 × 104

3,250

(11)

Cl2 + H2O → Cl + HOCl + H+

1.1 × 101 (s−1)

7,580

(11)

Cl2 + HO2 → Cl2 + H+ + O2

1.0 × 109

 

(12)

HOCl + O2 → Cl + OH + O2

7.5 × 106

 

(12)

HOCl + SO32− → ClSO3 + OH

7.6 × 108

 

(13)

ClSO3 + H2O → SO42− + Cl + 2 H+

2.7 × 102 (s−1)

 

(13)

Bromine species

\( \rm{OH}+{\rm{Br}}^{-}\rightleftharpoons {\rm{HOBr}}^{-}\)

1.1 × 1010/3.3 × 107

 

(14)

\( {\rm{HOBr}}^{-}+{\rm{H}}^{+}\rightleftharpoons \rm{Br}+{\rm{H}}_{2}\rm{O}\)

4.4 × 1010/1.4 (s−1)

 

(14)

HOBr → Br + OH

4.2 × 106

 

(14)

SO4 + Br → Br + SO42−

3.5 × 109

 

(6)

NO3 + Br → Br + NO3

4.0 × 109

 

(15)

\( \rm{Br}+{\rm{Br}}^{-}\rightleftharpoons {\rm{Br}}_{2}\)

1.1 × 1010/1.9 × 104 (s−1)

 

(16)

Br2 + HO2 → 2Br + H+ + O2

1.6 × 109

 

(6)

Br2 + O2 → 2Br + O2

1.7 × 108

 

(17)

Br2 + H2O2 → 2Br + H+ + HO2

1.0 × 105

 

(7)

Br2 + HSO3 → 2Br + H+ + SO3

6.3 × 107

780

(8)

Br2 + SO32− → 2Br + SO3

2.2 × 108

650

(8)

Br2 + NO2 → 2Br + NO2

2.0 × 107

 

(6)

Br2 + Br2 → 2Br + Br2

2.0 × 109

 

(6)

\( {\rm{Br}}^{-}+\rm{HOBr}+{\rm{H}}^{+}\rightleftharpoons {\rm{Br}}_{2}+{\rm{H}}_{2}\rm{O}\)

1.6 × 1010/9.7 × 101 (s−1)

 

(18)

HO2 + Br2 → Br + Br + H+ + O2

1.1 × 108

 

(12)

O2 + Br2 → Br2 + O2

5.6 × 109

 

(12)

O2 + HOBr → Br + + OH + O2

9.5 × 108

 

(12)

Br + HOCl + H+ → BrCl + H2O

1.3 × 106

 

(19)

\( {\rm{Cl}}^{-}+\rm{HOBr}+{\rm{H}}^{+}\rightleftharpoons \rm{BrCl}+{\rm{H}}_{2}\rm{O}\)

3 × 1010/∼6 × 105 (s−1)

 

(20)

Cl2 + Br → BrCl2

7.7 × 109

 

(20)

\( \rm{BrCl}+{\rm{Br}}^{-}\rightleftharpoons {\rm{Br}}_{2}{\rm{Cl}}^{-}\)

>1 × 108/>6 × 103 (s−1)a

 

(20)

O3 + Br (+ H+) → HOBr + O2

1.6 × 102

 

(6)

Iodine species

OH + I → HOI

1.1 × 1010

 

(21)

HOI → I + OH

1.2 × 108 (s−1)

 

(22)

I + I → I2

8.0 × 109

 

(6)

\( \rm{I}+{\rm{I}}^{-}\rightleftharpoons {\rm{I}}_{2}\)

1.0 × 1010/9.0 × 105 (s−1)

 

(23)

\( {\rm{I}}_{2}+{\rm{I}}^{-}\rightleftharpoons {\rm{I}}_{3}\)

6.2 × 109/8.5 × 106 (s−1)

 

(24)

I2 + I2 → I + I3

3.2 × 109

 

(6)

I2 + HOI → 2I + H+ + IO

∼1.0 × 105

 

(6)

I2 + HSO3 → 2I + H+ + SO3

1.4 × 106

2,320

(8)

I2 + SO32− → 2I + SO3

1.7 × 108

1,420

(8)

O3 + I (+ H+) → HOI + O2

2.4 × 109

8,790

(25)

\( \rm{HOI}+{\rm{I}}^{-}+{\rm{H}}^{+}\rightleftharpoons {\rm{I}}_{2}+{\rm{H}}_{2}\rm{O}\)

4.4 × 1012/3 (s−1)

 

(26)

OH + I2 → HOI + I

1.1 × 1010

 

(21)

OH + HOI → IO + H2O

1.3 × 105

 

(6)

IO + IO (+ H2O) → HOI + IO2H

1.5 × 109

 

(6)

O2 + I2 → I2 + O2

5.5 × 109

 

(12)

O2 + I3 → I2 + I + O2

8.0 × 108

 

(12)

HSO3 + I2 (+ H2O) → 2I + HSO4 + 2 H+

1.0 × 106

 

(27)

\( \rm{HOI}+{\rm{Br}}^{-}+{\rm{H}}^{+}\rightleftharpoons \rm{IBr}+{\rm{H}}_{2}\rm{O}\)

3.3 × 1012/8.0 × 105 (s−1)

 

(25)

\( \rm{HOI}+{\rm{Cl}}^{-}+{\rm{H}}^{+}\rightleftharpoons \rm{ICl}+{\rm{H}}_{2}\rm{O}\)

2.9 × 1010/2.4 × 106 (s−1)

 

(28)

HOCl + I + H+ → ICl + H2O

3.5 × 1011

 

(29)

\( \rm{ICl}+{\rm{I}}^{-}\rightleftharpoons {\rm{I}}_{2}{\rm{Cl}}^{-}\) b

5.1 × 108/0.7 (s−1)

 

(24)

HOBr + I → IBr + OH

5.0 × 109

 

(30)

\( \rm{IBr}+{\rm{I}}^{-}\rightleftharpoons {\rm{I}}_{2}{\rm{Br}}^{-}\) c

2.0 × 109/8.0 × 102 (s−1)

 

(24)

\( \rm{HOI}+{\rm{I}}^{-}\rightleftharpoons {\rm{I}}_{2}{\rm{OH}}^{-}\)

6.7 × 105/9.9 × 102 (s−1)

 

(30)

\( {\rm{I}}_{2}{\rm{OH}}^{-}\rightleftharpoons {\rm{I}}_{2}+\rm{OH}\)

3.0 × 105 (s−1)/1.0 × 1010

 

(30)

HOBr + HOI (+ H2O) → IO2 + Br + 2 H+

1.0 × 106

 

(31)

HOBr + IO2 → IO3 + Br + H+

1.0 × 106

 

(31)

HOI + IO2 → IO3 + I + H+

6.0 × 102

 

(31)

aThe equilibrium constant is K = [Br2Cl]/[BrCl][Br] = 1.8 × 104 [dm3 mol−1]

bThe equilibrium \( {\rm{I}}_{2}{\rm{Cl}}^{-}\rightleftharpoons {\rm{I}}_{2}+{\rm{Cl}}^{-}\) leads to the formation of iodine. Other equilibria involved are: \( \rm{ICl}+{\rm{Cl}}^{-}\rightleftharpoons {\rm{ICl}}_{2}\), K = [ICl2]/[ICl][Cl] = 77 (dm3 mol−1), \( \rm{HOI}+{\rm{2Cl}}^{-}+{\rm{H}}^{+}\rightleftharpoons {\rm{ICl}}_{2}+{\rm{H}}_{2}\rm{O}\), K = [ICl2]/[HOl][Cl]2[H+] = 9.4 × 105 (dm3 mol−1) Wang et al. (1989)

cThe equilibrium constant for \( {\rm{I}}_{2}{\rm{Br}}^{-}\rightleftharpoons {\rm{I}}_{2}+{\rm{Br}}^{-}\) is K = 0.08 (mol dm−3) Troy et al. (1991)

Table 8.37

Reactions with organic species

Reaction

k 298

B

Ref.

OH + CH4 → CH3 + H2O

1.1 × 108

 

(1)

CH3 + O2 → CH3O2

4.1 × 109

 

(2)

CH3O2 + CH3O2 → HCHO + CH3OH + O2

1.3 × 108

 

(3)

→ 2CH3O

0.7 × 108

 

(3)

CH3O → CH2OH

5.0 × 105

 

(3)

CH2OH + O2 → O2CH2OH

4.5 × 109

 

(4)

O2CH2OH → HCHO + HO2

<10 (s−1)

 

(3)

OH + CH3OH → CH2OH + H2O

9.7 × 108 a

580

(1, 5)

SO4 + CH3OH → CH2OH + HSO4

9.0 × 106

2,190

(6)

NO3 + CH3OH → CH2OH + NO3 + H+

5.1 × 105

4,300

(7)

OH + CH2(OH)2 → CH(OH)2 + H2O

1.1 × 109

1,020

(1, 8)

SO4 + CH2(OH)2 → CH(OH)2 + HSO4

1.3 × 107

1,300

(9)

NO3 + CH2(OH)2 → CH(OH)2 + NO3 + H+

7.8 × 105

4,400

(7)

CH(OH)2 + O2 → OOCH(OH)2

3.5 × 109

 

(10)

OOCH(OH)2 → HCOOH + HO2

>1.0 × 106

 

(10)

OH + HCOOH → CO2 + H + H2O

1.2 × 108

990

(1, 8)

OH + HCOO → CO2 + H2O

3.1 × 109

1,240

(1, 8)

SO4 + HCOOH → HSO4 + H + CO2

4.6 × 105

 

(11)

SO4 + HCOO → HSO4 + CO2

1.1 × 108

 

(11)

NO3 + HCOOH → NO3 + H+ + H + CO2

3.8 × 105

3,400

(12)

NO3 + HCOO → NO3 + H + CO2

5.1 × 107

2,200

(12)

OH + C2H6 → C2H5 + H2O

1.8 × 109

 

(1)

C2H5 + O2 → C2H5O2

2.1 × 109

 

(2)

C2H5O2 + C2H5O2 → productsb

1.6 × 108

 

(12)

OH + C2H5OH → CH3CHOH + H2O

1.9 × 109 c

1,200

(1, 13)

SO4 + C2H5OH → CH3CHOH + HSO4

4.1 × 107

1,750

(6)

NO3 + C2H5OH → CH3CHOH + NO3 + H+

2.2 × 106

3,300

(7)

CH3CHOH + O2 → CH3CH(O2)OH

4.6 × 109

 

(4)

CH3CH(O2)OH → CH3CHO + HO2

5.0 × 101 (s−1)

 

(16)

OH + CH3CHO → CH3CO + H2O

3.6 × 109

 

(17)

OH + CH3CH(OH)2 → CH3C(OH)2 + H2O

1.2 × 109

 

(17)

CH3CO + O2 → CH3CO3

>1.0 × 109

 

d

CH3CO3 + O2 (+ H+) → CH3C(O)OOH + O2

∼1.0 × 109

 

(17)

CH3C(OH)2 + O2 → CH3COOH + HO2

>1.0 × 109

 

d, e

OH + CH3COOH → CH2COO + H+ + H2O

1.7 × 107

1,330

(8)

OH + CH3COO → CH2COO + H2O

7.3 × 107

1,770

(8)

CH2COO + O2 → O2CH2COO

1.7 × 109

 

(18)

O2CH2COO + O2 (+ H+) → HOOCH2COO

1.7 × 107

 

(18)

CH2COO + CH2COO → products f

7.5 × 107

 

(18)

SO4 + CH3COOH → SO42− + CH2COO + 2 H+

1.4 × 104

 

(8)

SO4 + CH3COO → SO42− + CO2 + CH3

2.8 × 107

1,210

(19)

NO3 + CH3COOH → NO3 + CH2COO + 2 H+

1.4 × 104

3,800

(12)

NO3 + CH3COO → NO3 + CO2 + CH3

2.9 × 106

3,800

(12)

aThis is the major reaction pathway, occurring with 93% probability; the remainder proceeds by abstraction of an H-atom from the hydroxyl group, with formaldehyde as the product (15)

bThe products are primarily ethanol and acetaldehyde

cThe reaction pathway shown proceeds with 84.3% probability. Hydrogen abstraction at the methyl group and at the hydroxyl group occur with 13.25 and 2.5% probability, respectively (Asmus et al. 1973)

dThe addition of oxygen to organic radicals generally occurs at nearly diffusion-controlled rates (20)

eSimilar to the oxidation of formaldehyde, the hydroxyalkylperoxy radical formed by the addition of oxygen to the hydrated acetyl radical decomposes rapidly toward the products shown

fThe major product is glyoxylic acid, other products are glycolic acid and formaldehyde

References

  1. Klots, C.E., B.B. Benson, J. Mar. Res. 21, 48–57 (1963)Google Scholar
  2. Douglas, E., J. Phys. Chem. 68, 169–174 (1964)Google Scholar
  3. Murray, C.N., J.P. Riley, T.R.S. Wilson, Deep-Sea Res. 16, 297–310 (1969)Google Scholar
  4. Montgomery, H.A.C., N.S. Thom, A. Cockburn, J. Appl. Chem. 14, 280–296 (1964)Google Scholar
  5. Carpenter, J.H., Limnol. Oceanogr. 11, 264–277 (1966)Google Scholar
  6. Murray, C.N., J.P. Riley, Deep-Sea Res. 16, 311–320 (1969)Google Scholar
  7. Benson, B.B., D. Krause Jr., J. Chem. Phys. 64, 689–709 (1976)Google Scholar
  8. Cosgrove, B.A., J. Walkley, J. Chromatogr. 216, 161–167 (1981)Google Scholar
  9. Murray, C.N., J.P. Riley, Deep-Sea Res. 17, 203–209 (1970)Google Scholar
  10. Ben Naim, A., J. Wilf, M. Yaacobi, J. Phys. Chem. 77, 95–102; 78, 170–175 (1973)Google Scholar
  11. Yamamoto, S., J.B. Alcanskas, T.E. Crozier, J. Chem. Eng. Data 21, 78–80 (1976)Google Scholar
  12. Muccitelli, J.A., W.-Y. Wen, J. Solution Chem. 9, 141–161 (1980)Google Scholar
  13. Rettich, T.R., Y.P. Handa, R. Battino, E. Wilhelm, J. Phys. Chem. 85, 3230–3237 (1981)Google Scholar
  14. Winkler, L.W., Ber. Deutsch. Chem. Ges. 34, 1408–1422 (1901)Google Scholar
  15. Rettich, T.R., R. Battino, E. Wilhelm, Ber. Bunsenges. Phys. Chem. 86, 1128–1132 (1982)Google Scholar
  16. Winkler, L.W., Ber. Deutsch. Chem. Ges. 34, 1408–1422 (1901)Google Scholar
  17. Geffcken, G., Z. Phys. Chem. 49, 257–302 (1904)Google Scholar
  18. Knopp, W., Z. Phys. Chem. 48, 97–108 (1904)Google Scholar
  19. Findlay, A., H.J.M. Creighton, J. Chem. Soc. 97, 536–561 (1910)Google Scholar
  20. Kunerth, W., Phys. Rev. 19, 512–524 (1922)Google Scholar
  21. Markham, A.E., K.A. Kobe, J. Am. Chem. Soc. 63, 449–454 (1944)Google Scholar
  22. Joosten, G.E.H., P.V. Danckwerts, J. Chem. Eng. Data 17, 452–454 (1972)Google Scholar
  23. Weiss, R.F., B.A. Price, Mar. Chem. 8, 347–359 (1980)Google Scholar
  24. Warneck, P., in Chemicals in the Atmosphere – Solubility, Sources and Reactivity, ed. by P.G.T. Fogg, J.M. Sangster (Wiley, Chichester, 2003), pp. 225–228Google Scholar
  25. Yoshizumi, K., K. Aodi, I. Nouchi, T. Okita, T. Kobayashi, S. Kawamura, M. Tajima, Atmos. Environ. 18, 395–401 (1984)Google Scholar
  26. Hwang, H., P.K. Dasgupta, Environ. Sci. Technol. 19, 255–258 (1985)Google Scholar
  27. Lind, J.A., G.L. Kok, J. Geophys. Res. 91, 7889–7895 (1986); Erratum 99, 21119 (1994)Google Scholar
  28. Zhou, X., Y.-N. Lee, J. Phys. Chem. 96, 265–272 (1992)Google Scholar
  29. O’Sullivan, D.W., M. Lee, B.C. Noone, B.G. Heikes, J. Phys. Chem. 100, 3241–3247 (1996)Google Scholar
  30. Winkler, L.W., Ber. Deutsch. Chem. Ges. 34, 1408–1422 (1901)Google Scholar
  31. Armor, J.N., J. Chem. Eng. Data 19, 82–84 (1974)Google Scholar
  32. Schwartz, S.E., W.H. White, Adv. Environ. Sci. Eng. 4, 1–45 (1981)Google Scholar
  33. Lee, Y.-N., S.E. Schwartz, J. Phys. Chem. 85, 840–848 (1981)Google Scholar
  34. Benkelberg, H.-J., S. Hamm, P. Warneck, J. Atm. Chem. 20, 17–34 (1995)Google Scholar
  35. Kames, J., U. Schurath, J. Atm. Chem. 21, 151–164 (1995)Google Scholar
  36. Kames, J., S. Schweighoefer, U. Schurath, J. Atm. Chem. 12, 169–180 (1991)Google Scholar
  37. Winkler, L.W., Z. phys. Chem. 55, 344–354 (1906)Google Scholar
  38. Elliot, S., Atmos. Environ. 23, 1977–1980 (1989)Google Scholar
  39. De Bruyn, W.J., E. Swartz, J.H. Hu, J.A. Shorter, P. Davidovits, J. Geophys. Res. 100, 7245–7251 (1995) (only 25°C value)Google Scholar
  40. Przyjazny, A., W. Janicki, W. Chrzanowski, R. Staszewski, J. Chromatogr. 280, 249–260 (1983)Google Scholar
  41. Dacey, J.W.H., S.G. Wakeham, B.L. Howes, Geophys. Res. Lett. 11, 991–994 (1984)Google Scholar
  42. Wong, P.K., Y.H. Wang, Chemosphere 35, 535–544 (1997)Google Scholar
  43. Ashton, J.T., R.A. Dawe, K.W. Miller, E.B. Smith, B.J. Stickings, J. Chem. Soc. A 1968, 1793–1796 (1968)Google Scholar
  44. Betterton, E.A., M.R. Hoffmann, Environ. Sci. Technol. 22, 1415–1418 (1988)Google Scholar
  45. Zhou, X., K. Mopper, Environ. Sci. Technol. 24, 1864–1869 (1990)Google Scholar
  46. Warneck, P., Atmos. Environ. 40, 7146–7151 (2006)Google Scholar
  47. Warneck, P., Chemosphere 69, 347–361 (2007)Google Scholar
  48. Munz, C., P.V. Roberts, J. Am. Water Works Assoc. 79, 62–69 (1987)Google Scholar
  49. Hunter-Smith, R.J., P.W. Balls, P.S. Liss, Tellus 35B, 170–176 (1983)Google Scholar
  50. Ashworth, R.A., G.B. Howe, M.E. Mullins, T.N. Rogers, J. Hazard. Mater. 18, 25–36 (1988)Google Scholar
  51. Warner, M.J., R.F. Weiss, Deep-Sea Res. 32, 1485–1497 (1985)Google Scholar
  52. Wisegarver, D.P., J.D. Cline, Deep-Sea Res. 32, 97–106 (1985)Google Scholar
  53. Park, T., T.R. Rettich, R. Battino, D. Peterson, E. Wilhelm, J. Chem. Eng. Data 27, 324–326 (1982)Google Scholar
  54. Wen, W.-Y., J.A. Muccitelli, J. Solut. Chem. 8, 225–245 (1979)Google Scholar
  55. Ip, H.S.S., X.H.H. Huang, J.Z. Yu, Geophys. Res. Lett. 36, L01802 (2009). doi:10.1024/2008GL036212Google Scholar
  56. Wagman, D.D., W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey, R.H. Schumm, K.L. Churney, R.L. Nuttall, The NBS tables of thermodynamic properties. J. Phys. Chem. Ref. Data 11(Suppl 2), 1–392 (1982)Google Scholar
  57. Maahs, H.G., in Heterogeneous Atmospheric Chemistry, ed. by D.R. Schryer. Geophysical Monograph Series 26 (American Geophysical Union, Washington, DC, 1982), pp. 187–195Google Scholar
  58. Goldberg, R.N., V.B. Parker, J. Res. Natl. Bur. Stand. 90, 341–358 (1985)Google Scholar
  59. Clegg, S.L., P. Brimblecombe, J. Phys. Chem. 93, 7237–7248 (1989)Google Scholar
  60. Dasgupta, P.K., S. Dong, Atmos. Environ. 20, 565–570 (1986)Google Scholar
  61. Brimblecombe, P., S.L. Clegg, J. Atmos. Chem. 7, 1–18 (1988); Erratum: 8, 95Google Scholar
  62. Park, J.-Y., Y.-N. Lee, J. Phys. Chem. 92, 6294–6302 (1988)Google Scholar
  63. Johnson, B.J., E.A. Betterton, D. Craig, J. Atmos. Chem. 24, 113–119 (1996)Google Scholar
  64. Ip, H.S.S., X.H.H. Huang, J.Z. Yu, Geophys. Res. Lett. 36, L01802 (2009). doi:10.1024/2008GL036212Google Scholar
  65. Smith, R.M., A.E. Martell, Critical Stability Constants, vols. 3 and 4 (Plenum Press, New York, 1976)Google Scholar
  66. Wagman, D.D., W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, R.L. Nuttal, J. Phys. Chem. Ref. Data 11(Suppl 2), 1–392 (1982)Google Scholar
  67. Eigen, M., W. Kruse, G. Maass, L. De Maeyer, Progr. React. Kinet. 2, 285–318 (1964)Google Scholar
  68. Bielski, B.H.J., D.E. Cabelli, R.L. Arudi, A.B. Ross, J. Phys. Chem. Ref. Data 14, 1041–1100 (1985)Google Scholar
  69. Buxton, G.V., C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513–886 (1988)Google Scholar
  70. Johnson, K.S., Limn. Oceanogr. 27, 849–855 (1982)Google Scholar
  71. Davis Jr., W., H.J. De Bruin, J. Inorg. Nucl. Chem. 26, 1069–1083 (1964)Google Scholar
  72. Drexler, C., H. Elias, B. Fechner, K.J. Wannowius, Fresenius J. Anal. Chem. 340, 605–615 (1991)Google Scholar
  73. Goldstein, S., G. Czapski, Inorg. Chem. 36, 4156–4162 (1997); Lρgager, T., K. Sehested, J. Phys. Chem. 97, 10047–10052 (1993)Google Scholar
  74. Grätzel, M., A. Henglein, J. Lilie, G. Beck, Ber. Bunsenges. Physik. Chem. 73, 646–653 (1969)Google Scholar
  75. Bates, R.G., G.D. Pinching, J. Am. Chem. Soc. 72, 1393–1396 (1950)Google Scholar
  76. Goldberg, R.N., V.B. Parker, J. Res. Natl. Bur. Stand. 90, 341–358 (1985)Google Scholar
  77. Elias, H., U. Götz, K.J. Wannowius, Atmos. Environ. 28, 439–448 (1994)Google Scholar
  78. Ball, D.L., J.O. Edwards, J. Am. Chem. Soc. 78, 1125–1129 (1956)Google Scholar
  79. Biruš, M., N. Kujundžić, M. Pribanić, Progr. React. Kinet. 18, 171–271 (1993)Google Scholar
  80. Fecher, B., Kinetik und Mechanismus der S(IV) Oxidation mit Wasserstoffperoxid und organischen Peroxiden in wässriger Lösung. Dissertation, Technische Hochschule Darmstadt, Germany, 1995Google Scholar
  81. Sørensen, P.E., K. Bruhn, F. Lindeløv, Acta. Chem. Scand. A28, 162–168 (1974)Google Scholar
  82. Fischer, M., P. Warneck, Ber. Bunsenges. Physik. Chem. 95, 523–527 (1991)Google Scholar
  83. Bell, R.P., P.G. Evans, Proc. Roy. Soc. Lond. A291, 297–323 (1966)Google Scholar
  84. Schecker, H.G., G. Schulz, Z. Phys. Chem. N. F. 65, 221–224 (1969)Google Scholar
  85. Kurz, J.L., J.I. Coburn, J. Am. Chem. Soc. 89, 3524–3528; 3528–3537 (1967)Google Scholar
  86. Deister, U., R. Neeb, G. Helas, P. Warneck, J. Phys. Chem. 90, 3213–3217 (1986)Google Scholar
  87. Boyce, S.D., M.R. Hoffmann, J. Phys. Chem. 88, 4740–4746 (1984)Google Scholar
  88. Kok, G.L., S.N. Gitlin, A.L. Lazrus, J. Geophys. Res. 91, 2801–2804 (1986)Google Scholar
  89. Sørensen, P.E., V.S. Andersen, Acta Chem. Scand. 24, 1301–1306 (1970)Google Scholar
  90. Alif, A., P. Boule, J. Photochem. Photobiol. A59, 357–367 (1991)Google Scholar
  91. Benkelberg, H.-J., P. Warneck, J. Phys. Chem. 99, 5214–5221 (1995)Google Scholar
  92. Buxton, G.V., W.K. Wilmarth, J. Phys. Chem. 67, 2835–2841 (1963) (and earlier papers cited therein)Google Scholar
  93. David, F., P.G. David, J. Phys. Chem. 80, 579–583 (1976)Google Scholar
  94. Faust, B.C., J. Hoigné, Atmos. Environ. 24A, 79–89 (1990) (and earlier papers cited therein)Google Scholar
  95. Fischer, M., P. Warneck, J. Phys. Chem. 100, 18749–18756 (1996) (and earlier papers cited therein)Google Scholar
  96. Hatchard, C.G., C.A. Parker, Proc. Roy. Soc. (Lond.) A235, 518–536 (1956)Google Scholar
  97. Warneck, P., C. Wurzinger, J. Phys. Chem. 92, 6278–6283 (1988)Google Scholar
  98. Warneck, P., P. Mirabel, G.A. Salmon, R. van Eldik, C. Vinckier, K.J. Wannowius, C. Zetzsch, in Heterogeneous and Liquid-Phase Processes, Transport and Chemical Transformation of Pollutants in the Troposphere, vol. 2. (Springer, Berlin, 1996), pp. 7–71Google Scholar
  99. Zellner, R., M. Exner, H. Herrmann, J. Atm. Chem. 10, 411–425 (1990)Google Scholar
  100. Zepp, R.G., J. Hoigné, H. Bader, Environ. Sci. Technol. 21, 443–450 (1987)Google Scholar
  101. Zuo, Y., J. Hoigné, Environ. Sci. Technol. 26, 1014–1022 (1992)Google Scholar
  102. Bielski, B.H.J., D.E. Cabelli, R.L. Arudi, A.B. Ross, J. Phys. Chem. Ref. Data 14, 1041–1100 (1985)Google Scholar
  103. Christensen, H., K. Sehested, J. Phys. Chem. 92, 3007–3011 (1988)Google Scholar
  104. Christensen, H., K. Sehested, E. Bjergbakke, Water Chem. Nucl. React. Syst. 5, 141–144 (1989); Elliot, A.J., G.V. Buxton, J. Chem. Soc. Faraday Trans. 88, 2465–2470 (1992)Google Scholar
  105. Buxton G.V., C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513–886 (1988)Google Scholar
  106. Sehested, K., J. Holcman, E.J. Hart, J. Phys. Chem. 87, 1951–1954 (1983); Staehelin, J., R.E. Bühler, J. Staehelin, J. Hoigné, J. Phys. Chem. 88, 2560–2564; 5450; 5999–6004 (1984)Google Scholar
  107. Chin, M., P.H. Wine, in Aquatic and Surface Photochemistry, ed. by G.R. Helz, R.G. Zepp, D.G. Crosby (Lewis Publication, Boca Raton, 1994), pp. 85–96Google Scholar
  108. Herrmann, H., B. Ervens, H.-W. Jacobi, R. Wolke, P. Nowacki, R. Zellner, J. Atmos. Chem. 36, 231–284 (2000)Google Scholar
  109. Neta, P., R.E. Huie, A.B. Ross, J. Phys. Chem. Ref. Data 17, 1027–1284 (1988)Google Scholar
  110. Hoffmann, M.R., Atmos. Environ. 20, 1145–1154 (1986)Google Scholar
  111. Maaß, F., H. Elias, K.J. Wannowius, Atmos. Environ. 33, 4413–4419 (1999)Google Scholar
  112. Lind, J.A., A.L. Lazrus, G.L. Kok, J. Geophys. Res. 92, 4171–4177 (1987)Google Scholar
  113. Amels, P., H. Elias, U. Götz, U. Steingens, K.J. Wannowius, in Heterogeneous and Liquid Phase Processes, ed. by P. Warneck. Transport and Chemical Transformation of Pollutants in the Troposphere, vol. 2 (Springer, Berlin, 1996), pp. 77–88Google Scholar
  114. Drexler, C., H. Elias, B. Fecher, K.J. Wannowius, Fresenius. J. Anal. Chem. 340, 605–615 (1991)Google Scholar
  115. Elias, H., U. Götz, K.J. Wannowius, Atmos. Environ. 28, 439–448 (1994)Google Scholar
  116. Buxton, G.V. S. McGowan, G.A. Salmon, J.E. Williams, N.D. Wood, Atmos. Environ. 30, 2483–2493 (1996)Google Scholar
  117. Buxton, G.V., C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513–886 (1988)Google Scholar
  118. Buxton, G.V., M. Bydder, G.A. Salmon, Phys. Chem. Chem. Phys. 1, 269–273 (1999)Google Scholar
  119. Buxton, G.V., T.N. Malone, G.A. Salmon, J. Chem. Soc. Faraday Trans. 92, 1287–1289 (1996); Fischer, M., P. Warneck, J. Phys. Chem. 100, 15111–15117 (1996)Google Scholar
  120. Wine, P.H., Y. Tang, R.P. Thorn, J.R. Wells, D.D. Davis, J. Geophys. Res. 94, 1085–1094 (1989)Google Scholar
  121. Herrmann, H., A. Reese, R. Zellner, J. Molec. Struct. 348, 183–186 (1995)Google Scholar
  122. Løgager, T., K. Sehested, J. Holcman, Radiat. Phys. Chem. 41, 539–543 (1993)Google Scholar
  123. Exner, M., H. Herrmann, R. Zellner, Ber. Bunsenges. Phys. Chem. 96, 470–477 (1992)Google Scholar
  124. Huie, R.E., C.L. Clifton, J. Phys. Chem. 94, 8561–8567 (1990)Google Scholar
  125. Boyce, S.D., M.R. Hoffmann, J. Phys. Chem. 88, 4740–4746 (1984); Kok, G.L., S.N. Gitlin, A.L. Lazrus, J. Geophys. Res. 91, 2801–2804 (1986)Google Scholar
  126. Sørensen, P.E., V.S. Andersen, Acta Chem. Scand. 24, 1301–1306 (1970)Google Scholar
  127. Barlow, S., G.V. Buxton, S.A. Murray, G.A. Salmon, J. Chem. Soc. Faraday Trans. 93, 3637–3640; 3641–3645 (1997). See also: Barlow, S., G.V. Buxton, S.A. Murray, G.A. Salmon, in Proc. EUROTRAC Symp. ’96, ed. by P.M. Borrell, P. Borrell, K. Kelly, T. Cvitaš, W. Seiler. Clouds, Aerosols, Modeling and Photo-Oxidants, vol. 1 (Computational Mechanics Publications, Southampton, 1997), pp. 360–365Google Scholar
  128. Herrmann, H., R. Zellner, in N-Centered Radicals, ed. by Z.B. Alfassi (Wiley, London, 1998), pp. 291–343Google Scholar
  129. Park, J.-Y., Y.-N. Lee, J. Chem. Phys. 92. 6294–6302 (1988)Google Scholar
  130. Katsumura, Y., P.Y. Jiang, R. Nagaishi, T. Oishi, K. Ishigure, Y. Yoshida, J. Phys. Chem. 95, 4435–4439 (1991)Google Scholar
  131. Awad, H.H., D.M. Stanbury, Int. J. Chem. Kinet. 25, 375–381 (1993); Pires, M., J. Rossi, D.S. Ross, Int. J. Chem. Kinet. 26, 1207–1227 (1994)Google Scholar
  132. Huie, R.E., S. Padmaja, Free Rad. Res. Commun. 18, 195–199 (1993)Google Scholar
  133. Løgager, T., K. Sehested, J. Phys. Chem. 97, 6664–6669 (1993)Google Scholar
  134. Damschen, D.E., L.R. Martin, Atmos. Environ. 17, 2005–2011 (1983)Google Scholar
  135. Løgager, T., K. Sehested, J. Phys. Chem. 97, 10047–10052 (1993)Google Scholar
  136. Exner, M., H. Herrmann, R. Zellner, Ber. Bunsenges. Phys. Chem. 96, 470–477 (1992)Google Scholar
  137. Sehested, K., T. Løgager, J. Holcman, O.J. Nielsen, in Transport and Transformation of Pollutants in the Troposphere, Proc. EUROTRAC Symp. ’94, ed. by P.M. Borrell, P. Borrell, T. Cvitaš, W. Seiler (SPB Academic Publishing bv, Den Haag, 1994), pp. 999–1004Google Scholar
  138. Herrmann, H., R. Zellner, in N-Centered Radicals, ed. by Z.B. Alfassi (Wiley, London, 1998), pp. 291–343Google Scholar
  139. Buxton G.V., C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513–886 (1988)Google Scholar
  140. Bielski, B.H.J., D.E. Cabelli, R.L. Arudi, A.B. Ross, J. Phys. Chem. Ref. Data 14, 1041–1100 (1985)Google Scholar
  141. Rush, J.D., B.H.J. Bielski, J. Phys. Chem. 89, 5062–5066 (1985)Google Scholar
  142. Walling, C., Acc. Chem. Res. 8, 125–131 (1975)Google Scholar
  143. Løgager, T., J. Holcman, K. Sehested, T. Pedersen, Inorg. Chem. 31, 3523–3529 (1992); Jacobsen, F., J. Holcman, K. Sehested, Int. J. Chem. Kinet. 29, 17–24; 30, 215–221 (1997/1998)Google Scholar
  144. Kraft, J., R. Van Eldik, Inorg. Chem. 28, 2306–2312 (1989)Google Scholar
  145. Gilbert, B.C., J.K. Stell, J. Chem. Soc. Perkin Trans. 2, 1281–1288 (1990)Google Scholar
  146. Buxton, G.V., T.N. Malone, G.A. Salmon, J. Chem. Soc. Faraday Trans. 93, 2893–2897 (1997)Google Scholar
  147. Ziajka, J., F. Beer, P. Warneck, Atmos. Environ. 28, 2549–2552 (1994); Warneck, P., J. Ziajka, Ber. Bunsenges. Phys. Chem. 99, 59–65 (1995)Google Scholar
  148. Herrmann, H., R. Zellner, in N-Centered Radicals, ed. by Z.B. Alfassi (Wiley, London, 1998), pp. 291–343Google Scholar
  149. Sedlak, D.L., J. Hoigné, Atmos. Environ. 27A, 2173–2185 (1993)Google Scholar
  150. Buxton, G.V., Q.G. Mulazzani, A.B. Ross, J. Phys. Chem. Ref. Data 24, 199–1349 (1995)Google Scholar
  151. Goldstein, S., G. Czapski, H. Cohen, D. Meyerstein, Inorg. Chim. Acta 192, 87–93 (1992)Google Scholar
  152. Von Piechowski, M., T. Nauser, J. Hoigné, R.E. Bühler, Ber. Bunsenges. Phys. Chem. 97, 762–771 (1993)Google Scholar
  153. Marsawa, M., H. Cohen, D. Meyerstein, D.L. Hickman, A. Bacac, J.H. Espensen, J. Am. Chem. Soc. 110, 4293–4297 (1988); Kozlov, Y.N., V.M. Berdnikov, Russ. J. Phys. Chem. 47, 338–340 (1973); see also: Moffet, W., R.G. Zika, Environ. Sci. Technol. 21, 804–810 (1987)Google Scholar
  154. Hoigné, J., R. Bühler, in Heterogeneous and Liquid Phase Processes, ed. by P. Warneck. Transport and Chemical Transformation of Pollutants in the Troposphere, vol. 2 (Springer, Berlin, 1996), pp. 110–115Google Scholar
  155. Diebler, H., N. Sutin, J. Phys. Chem. 68, 174–180 (1964)Google Scholar
  156. Jacobsen, F., J. Holcman, K. Sehested, J. Phys. Chem. A101, 1324–1328 (1997)Google Scholar
  157. Jacobsen, F., J. Holcman, K. Sehested, Int. J. Chem. Kinet. 30, 207–214 (1998)Google Scholar
  158. Herrmann, H., H.-W. Jacobi, G. Raabe, A. Reese, R. Zellner, Fresenius J. Anal. Chem. 355, 343–344 (1996)Google Scholar
  159. Buxton, G.V., M. Bydder, G.A. Salmon, Phys. Chem. Chem. Phys. 1, 269–273 (1999)Google Scholar
  160. Buxton, G.V., M. Bydder, G.A. Salmon, J. Chem. Soc. Faraday Trans. 94, 653–657 (1998)Google Scholar
  161. Jayson, G.G., B.J. Parsons, A.J. Swallow, J. Chem. Soc. Faraday Trans. 69, 1597–1607 (1973)Google Scholar
  162. Buxton, G.V., G.A. Salmon, J. Wang, Phys. Chem. Chem. Phys. 1, 3589–3594 (1999)Google Scholar
  163. Buxton, G.V., M. Bydder, G.A. Salmon, J.E. Williams, Phys. Chem. Chem. Phys. 2, 237–245 (2000)Google Scholar
  164. Neta, P., R.E. Huie, A.B. Ross, J. Phys. Chem. Ref. Data 17, 1027–1284 (1988)Google Scholar
  165. Herrmann, H., B. Ervens, H.-W. Jacobi, R. Wolke, P. Nowacki, R. Zellner, J. Atmos. Chem. 36, 231–284 (2000)Google Scholar
  166. Shoute, L.C.T., Z.B. Alfassi, P. Neta, R.E. Huie, J. Phys. Chem. 95, 3238–3242 (1991)Google Scholar
  167. Herrmann, H., H.-W. Jacobi, G. Raabe, A. Reese, R. Zellner, Fresenius J. Anal. Chem. 355, 343–344 (1996)Google Scholar
  168. McElroy, W.J., J. Phys. Chem. 94, 2435–2441 (1990)Google Scholar
  169. Wang, T.X.,D. Margerum, Inorg. Chem. 33, 1050–1055 (1994)Google Scholar
  170. Bielski, B.H.J., D.E. Cabelli, R.L. Arudi, A.B. Ross, J. Phys. Chem. Ref. Data 14, 1041–1100 (1985)Google Scholar
  171. Fogelman, K.D., D.M. Walker, D.W. Margerum, Inorg. Chem. 28, 986–993 (1989)Google Scholar
  172. Kläning, U.K.,T. Wolff, Ber. Bunsenges. Phys. Chem. 89, 243–245 (1985)Google Scholar
  173. Herrmann, H., R. Zellner, in N-Centered Radicals, ed. by Z.B. Alfassi (Wiley, London, (1998), pp. 291–343Google Scholar
  174. Merényi, G., J. Lind, J. Am. Chem. Soc. 116, 7872–7876 (1994)Google Scholar
  175. Wagner, I., H. Strehlow, Ber. Bunsenges. Phys. Chem. 91, 1317–1321 (1987)Google Scholar
  176. Beckwith, R.C., T.X. Wang, D.W. Margerum, Inorg. Chem. 35, 995–1000 (1996)Google Scholar
  177. Kumar, K., D.W. Margerum, Inorg. Chem. 26, 2706–2711 (1987)Google Scholar
  178. Wang, T.X., M.D. Kelley, J.N. Cooper, R.C. Beckwith, D.W. Margerum, Inorg. Chem. 33, 5872–5878 (1994)Google Scholar
  179. Buxton, G.V., C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513–886 (1988)Google Scholar
  180. Ellison, D.H., G.A. Salmon, F. Wilkinson, Proc. Roy. Soc. (Lond.) A 328, 23–36 (1972)Google Scholar
  181. Fornier de Violet, P., R. Bonneau, S.R. Loan, J. Phys. Chem. 78, 1698–1701 (1974); Barkatt, A., M. Ottolenghi, Mol. Photochem. 6, 253–261 (1974)Google Scholar
  182. Troy, R.C., M.D. Kelley, J.C. Nagy, D.W. Margerum, Inorg. Chem. 30, 4838–4845 (1991)Google Scholar
  183. Magi, L., F. Schweitzer, C. Pallares, S. Cherif, P. Mirabel, C. George, J. Phys. Chem. A 101, 4943–4949 (1997)Google Scholar
  184. Eigen, M., K. Kustin, J. Am. Chem. Soc. 84, 1355–1361 (1962)Google Scholar
  185. Olsen, R.J., I.R. Epstein, J. Chem. Phys. 94, 3083–3095 (1991)Google Scholar
  186. Wang, Y.L., J.C. Nagy, D.W. Margerum, J. Am. Chem. Soc. 111, 7838–7844 (1989)Google Scholar
  187. Nagy, J.C., K. Kumar, D.W. Margerum, Inorg. Chem. 27, 2773–2780 (1988)Google Scholar
  188. Troy, R.C., D.W. Margerum, Inorg. Chem. 30, 3538–3543 (1991)Google Scholar
  189. Chinake, C.R., R.H. Simoyi, J. Phys. Chem. 100, 1865–1871 (1996)Google Scholar
  190. Buxton, G.V., C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17,513–886 (1988)Google Scholar
  191. Marchaj, A., D.G. Kelly, A. Bakac, J.H. Espenson, J. Phys. Chem. 95, 4440–4441 (1991)Google Scholar
  192. Schuchmann, H.-P., C. von Sonntag, Z. Naturforsch. 40b, 215–221 (1984)Google Scholar
  193. Adams, G.E., R.L. Wilson, Trans. Faraday, Soc. 63, 2981–2987 (1969)Google Scholar
  194. Elliot, A.J., D.R. McCracken, Radiat. Phys. Chem. 33, 69–74 (1989)Google Scholar
  195. Clifton, C.L., R.E. Huie, Int. J. Chem. Kinet. 21, 677–687 (1989)Google Scholar
  196. Herrmann, H., R. Zellner, in N-Centered Radicals, ed. by Z.B. Alfassi (Wiley, London, 1998), pp. 291–343Google Scholar
  197. Chin, M., P.H. Wine, in Aquatic and Surface Photochemistry, ed. by G.R. Helz, R.G. Zepp, D.G. Crosby (Lewis Publication, Boca Raton, 1994), pp. 85–96Google Scholar
  198. Buxton, G.V., G.A. Salmon, N.D. Wood, in Proc. 5th European Symp., ed. by G. Restelli, G. Angeletti. Physico-chemical Behaviour of Atmospheric Pollutants (Kluwer, Dordrecht, 1990), pp. 245–250Google Scholar
  199. McElroy, W.J., S.J. Waygood, J. Chem. Soc. Faraday Trans. 87, 1513–1521 (1991); Bothe, E., D. Schulte-Frohlinde, Z. Naturforsch. 35b, 1035–1039 (1980)Google Scholar
  200. Wine, P.H., Y. Tang, R.P. Thorn, J.R. Wells, J. Geophys, Res. 94, 1085–1094 (1989)Google Scholar
  201. Exner, M., H. Herrmann, R. Zellner, J. Atmos. Chem. 18, 359–378 (1994)Google Scholar
  202. Herrmann, H., A. Reese, B. Ervens, F. Wicktor, R. Zellner, Phys. Chem. Earth B 24, 287–290 (1999)Google Scholar
  203. Ervens, B., S. Gligorowski, H. Herrmann, Chem. Phys. Phys. Chem. 5, 1811–182 (2003)Google Scholar
  204. Asmus, K.-D., H. Möckel, A. Henglein, J. Phys. Chem. 77, 1218 (1973)Google Scholar
  205. Bothe, E., M.N. Schuchmann, D. Schulte-Frohlinde, Z. Naturforsch. 38b, 212–219 (1983)Google Scholar
  206. Schuchmann, M.N., C. von Sonntag, J. Am. Chem. Soc. 110, 5698–5701 (1988)Google Scholar
  207. Schuchmann, M.N., H. Zegota, C. von Sonntag, Z. Naturforsch. 40b, 215–221 (1985)Google Scholar
  208. Huie, R.E., C.L. Clifton, J. Phys. Chem. 94, 8561–8567 (1990)Google Scholar
  209. Neta, P., R.E. Huie, A.B. Ross, J. Phys. Chem. Ref. Data 19, 413–513 (1990)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Peter Warneck
    • 1
  • Jonathan Williams
    • 1
  1. 1.Max Planck Institute for ChemistryMainzGermany

Personalised recommendations