Advertisement

Gas-Phase Photochemistry

  • Peter Warneck
  • Jonathan Williams
Chapter
  • 863 Downloads

Abstract

Chemical reactions in the atmosphere result largely from the absorption of solar radiation in the visible and ultraviolet spectral regions provided the incoming photons (light quanta) carry sufficient energy for chemical processes to be initiated. Photochemical reactions always occur in two steps: the first is the excitation of a molecule by the absorption of radiation; the second is a reaction of the excited molecule. In atmospheric chemistry, the most important process to be considered is dissociation of the excited molecule. Other modes of energy dissipation, such as fluorescence or collisional energy transfer, usually do not lead to chemical changes so that they are of lesser interest. Any quantitative assessment of the photochemical activity of an atmospheric constituent requires knowledge of (a) the photon flux of solar radiation, (b) the absorption cross section of the species under consideration, and (c) the primary quantum yield of the photo-dissociation process. These parameters depend on the wavelength of radiation; absorption cross sections and quantum yields may additionally depend on temperature and/or pressure.

Keywords

Primary Quantum Yield Photo-dissociation Processes Collisional Energy Transfer Absorption Cross Section Photodissociation Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Burlov-Vasiljev, K.A., A. Gurtovenko, Y.B. Matvejev, Solar Phys. 157, 51–73 (1995)Google Scholar
  2. Labs, D., H. Neckel, P.C. Simon, G. Thuillier, Solar Phys. 107, 203–219 (1987)Google Scholar
  3. Lean, J., Rev. Geophys. 29, 505–535 (1991)Google Scholar
  4. Mentall, J.E., D.E. Williams, J. Geophys. Res. 93, 735–746 (1988)Google Scholar
  5. Mentall, J.E., J.E. Frederick, J.R. Herman, J. Geophys. Res. 86, 9881–9884 (1981)Google Scholar
  6. Mount, G.H., G.J. Rottman, J. Geophys. Res. 88, 5403–5410, 6807–6811 (1983)Google Scholar
  7. Neckel, H., D. Labs, Solar Phys. 90, 205–258 (1984)Google Scholar
  8. Nicolet, M., Planet. Space Sci. 37, 1249–1289 (1989)Google Scholar
  9. Simon, P.C., Solar Phys. 74, 273–291 (1981)Google Scholar
  10. Thuillier, G., M. Hersé, P.C. Simon, D. Labs, H. Mandel, D. Gillotay, T. Foujols, Solar Phys. 177, 41–61 (1998)Google Scholar
  11. VanHoosier, M.E., J.-D.F. Bratoe, G.E. Brueckner, D.K. Prinz, Astrophys. Lett. Comm. 27, 163–168 (1988)Google Scholar
  12. Woods, T.N., D.K. Prinz, G.J. Rottman, J. London, P.C. Crane, R.P. Cebula, E. Hilsenrath, G.E. Brueckner, M.D. Andrews, O.R. White, M.E. VanHoosier, L.E. Floyd, L.C. Herring, B.G. Knapp, C.K. Pankratz, P.A. Reiser, J. Geophys. Res. 101 D6, 9541–9569 (1996)Google Scholar
  13. Jacobson, M.Z., Fundamentals of Atmospheric Modeling, 2nd edn. (Cambridge University Press, Cambridge, 2005)Google Scholar
  14. Mérienne, M.F., B. Coquart, A. Jenouvrier, Planet. Space Sci. 38, 617–625 (1990)Google Scholar
  15. Nicolet, M., Etude des reactions chimiques de l’ozone dans la stratosphère (Institut Royal Météorologique de Belgique, Belgium, 1978)Google Scholar
  16. Rattigan, O.V., D.E. Shallcross, R.A. Cox, J. Chem. Soc. Faraday Trans. 93, 2839–2846 (1997)Google Scholar
  17. Warneck, P., Chemistry of the Natural Atmosphere, 2nd edn. (Academic Press, San Diego, 2000), Copyright ElsevierGoogle Scholar
  18. Anderson, S.M., P. Hupalo, K. Mauersberger, Geophys. Res Lett. 20, 1579–1582 (1993)Google Scholar
  19. Atkinson, R., D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson Jr., R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, Atmos. Chem. Phys. 4, 1461–1738 (2004)Google Scholar
  20. Atkinson, R., D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson Jr., R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, Atmos. Chem. Phys. 6, 3625–4055 (2006)Google Scholar
  21. Atkinson, R., D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson Jr., R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, Atmos. Chem. Phys. 7, 981–1191 (2007)Google Scholar
  22. Barnes, R.J., A. Sinha, H.A. Michelsen, J. Phys. Chem. A 102, 8855–8859 (1998)Google Scholar
  23. Bauer, D., T. Ingham, S.A. Carl, G.K. Moortgat, J.N. Crowley, J. Phys. Chem. A 102, 2857–2864 (1998)Google Scholar
  24. Blitz, M.A., D.E. Heard, M.J. Pilling, S.R. Arnold, M.P. Chipperfield, Geophys. Res. Lett. 31, L06111, 1–5 (2004). doi:10.1029/2003GL018793Google Scholar
  25. Brion, J., A. Chakir, J. Charbonnier, D. Daumont, C. Parisse, J. Malicet, J. Atmos. Chem. 30, 29–299 (1998)Google Scholar
  26. Burkholder, J.B., J. Geophys. Res. 98, 2963–2974 (1993)Google Scholar
  27. Burkholder, J.B., R.K. Talukdar, A.R. Ravishankara, Geophys. Res. Lett. 21, 585–588 (1994)Google Scholar
  28. Burkholder, J.B., A.R. Ravishankara, S. Solomon, J. Geophys. Res. 100, 16793–16800 (1995)Google Scholar
  29. Cacciani, M., A. di Sarra, G. Fiocco, A.A. Amuroso, J. Geophys. Res. 94, 8485–8490 (1989)Google Scholar
  30. DeMore, W.B., E. Tschuikow-Roux, J. Phys. Chem. 94, 5856–5860 (1990)Google Scholar
  31. Deters, B., J.P. Burrows, J. Orphal, J. Geophys. Res. 103, 3563–3570 (1998)Google Scholar
  32. Gierczak, T., J.B. Burkholder, S. Bauerle, A.R. Ravishankara, Chem. Phys. 231, 229–244 (1998)Google Scholar
  33. Harwood, M.H., R.L. Jones, R.A. Cox, E. Lutman, O.V. Rattigan, J. Photochem. Photobiol. A 73, 167–175 (1993)Google Scholar
  34. Harwood, M.H., J.B. Burkholder, A.R. Ravishankara, J. Chem. Phys. A 102, 1309–1317 (1998)Google Scholar
  35. Hubrich, C., F. Stuhl, J. Photochem. 12, 93–107 (1980)Google Scholar
  36. Ingham, T., D. Bauer, J. Landgraf, J.N. Crowley, J. Chem. Phys. A 104, 3293–3298 (1998)Google Scholar
  37. Jenkin, M.E., R.A. Cox, A. Mellouki, G. Le Bras, G. Poulet, J. Phys. Chem. 94, 2927–2934 (1990)Google Scholar
  38. Jenouvrier, A., B. Coquart, M.F. Mérienne, J. Atmos. Chem. 25, 21–32 (1996)Google Scholar
  39. Jimenez, E., T. Gierczak, H. Stark, J.B. Burkholder, A.R. Ravishankara, Phys. Chem. Chem. Phys. 7, 342–348 (2005)Google Scholar
  40. Johnston, H.S., H.F. Davis, Y.T. Lee, J. Phys. Chem. 100, 4713–4723 (1996)Google Scholar
  41. Kang, W.K., K. Jung, D.-C. Kim, K.-H. Jung, J. Chem. Phys. 104, 5815–5820 (1996)Google Scholar
  42. Keller-Rudek, H., G.K. Moortgat, MPI-Mainz-UV–VIS-Spectral-Atlas of Gaseous Molecules (2010). www.atmosphere.mpg.de/spectral-atlas-mainz
  43. Malicet, J., D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, J. Brion, J. Atmos. Chem. 21, 263–273 (1995)Google Scholar
  44. Maric, D., J.P. Burrows, R. Meller, G.K. Moortgat, J. Photochem. Photobiol. A 70, 205–214 (1993)Google Scholar
  45. Maric, D., J.P. Burrows, G.K. Moortgat, J. Photochem. Photobiol. A 83, 179–192 (1994)Google Scholar
  46. Martinez, R.D., A.A. Buitrago, N.W. Howell, C.H. Hearn, J.A. Joens, Atmos. Environ. 26A, 685–792 (1992)Google Scholar
  47. Matsumi, Y., F.J. Comes, G. Hancock, A. Hofzumahaus, A.J. Hynes, M. Kawasaki, A.R. Ravishankara, J. Geophys., Res. 107, D3 4124, (2002). doi:10.1029/2001JD000510Google Scholar
  48. Meller, R.E., G.K. Moortgat, J. Geophys. Res. 105, 7089–7101 (2000)Google Scholar
  49. Mérienne, M.F., B. Coquart, A. Jenouvrier, Planet. Space Sci. 38, 617–625 (1990)Google Scholar
  50. Mérienne, M.F., A. Jenouvrier, B. Coquart, J. Atmos. Chem. 20, 281–297 (1995)Google Scholar
  51. Molina, L.T., M.J. Molina, J. Geophys. Res. 91, 14501–14508 (1986)Google Scholar
  52. Molina, L.T., J.J. Lamb, M.J. Molina, Geophys. Res. Lett. 8, 1008–1011 (1981)Google Scholar
  53. Moortgat, G.K., W. Seiler, P. Warneck, J. Chem. Phys. 78, 1185–1190 (1983)Google Scholar
  54. Moortgat, G.K., H. Meyrahn, P. Warneck, Chem. Phys. Chem. 11, 3896–3908 (2010)Google Scholar
  55. Mössinger, J.C., D.M. Rowley, R.A. Cox, Atmos. Chem. Phys. 2, 227–234 (2002)Google Scholar
  56. Nan, G., I. Burak, P.L. Houston, Chem. Phys. Lett. 209, 383–389 (1993)Google Scholar
  57. Ogorzalek, L.R., H.-P. Haerri, G.E. Hall, P.L. Houston, J. Chem. Phys. 90, 4222–4236 (1989)Google Scholar
  58. Orphal, J.S., E. Fellows, J.-M. Flaud, J. Geophys. Res. 108, 4077 (2003). doi: 10.1029/2002JD002489Google Scholar
  59. Osborne, B.A., G. Marston, L. Kaminski, N.C. Jones, J.M. Gingell, N. Mason, I.C. Walker, J. Delwiche, M.-J. Hubin-Franskin, J. Quant. Spectros. Radiat. Transfer 64, 67–74 (2000)Google Scholar
  60. Rattigan, O.V., D.E. Shallcross, R.A. Cox, J. Chem. Soc. Faraday Trans. 93, 2839–2846 (1997)Google Scholar
  61. Rebbert, R.E., P. Ausloos, J. Photochem. 4, 419–434 (1975)Google Scholar
  62. Rebbert, R.E., P. Ausloos, J. Photochem. 6, 265–276 (1977)Google Scholar
  63. Saiz-Lopez, A., R.W. Saunders, D.M. Joseph, S.H. Ashworth, J.M.C. Plane, Atmos. Chem. Phys. 4, 1443–1450 (2004)Google Scholar
  64. Sander, S.P., J. Phys. Chem. 90, 4135–4142 (1986)Google Scholar
  65. Sander, S.P., R.R. Friedl, D.M. Golden, M.J. Kurylo, G.K. Moortgat, H. Keller-Rudek, P.H Wine, A.R. Ravishankara, C.E. Kolb, M.J. Molina, B.J. Finlayson-Pitts, R.E. Huie, V.L. Orkin, NASA Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06–2 (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 2006)Google Scholar
  66. Seery, D.J., D. Britton, J. Phys. Chem. 68, 2263–2266 (1964)Google Scholar
  67. Selwyn, G., J. Podolske, H.S. Johnston, Geophys. Res. Lett. 4, 427–430 (1977)Google Scholar
  68. Simon, P.C., D. Gillotay, N. Vanlaethem-Meuree, J. Wisemberg, J. Atmos. Chem. 7, 107–135 (1988)Google Scholar
  69. Stutz, J., E.S. Kim, U. Platt, P. Bruno, C. Perrino, A. Febo, J. Geophys. Res. 105, 14585–14592 (2000)Google Scholar
  70. Talukdar, R.K., C.A. Longfellow, M.K. Gilles, A.R. Ravishankara, Geophys. Res. Lett. 25, 143–146 (1998)Google Scholar
  71. Troe, J., Z. Phys. Chem. 214, 573–581 (2000)Google Scholar
  72. Uma, S., P.K. Das, Can J. Chem. 72, 865–869 (1994)Google Scholar
  73. Vandaele, A.C., C. Hermans, P.C. Simon, M. Carleer, R. Colin, S. Fally, M.F. Merienne, A. Jenouvrier, B. Coquart, J. Quant. Spectros. Radiat. Transfer 59, 171–184 (1998)Google Scholar
  74. Warneck, P., Atmos. Environ. 35, 5773–5777 (2001)Google Scholar
  75. Yao, F., I. Wilson, H. Johnston, J. Phys. Chem. 86, 3611–3615 (1982)Google Scholar
  76. Yoshino, K., A.S.C. Cheung, J.R. Esmond, W.H. Parkinson, D.E. Freeman, S.L. Guberman, A. Jenouvrier, B. Coquart, M.F. Merienne, Planet. Space Sci. 36, 1469–1475 (1988)Google Scholar
  77. Yoshino, K., J.R. Esmond, A.S.C. Cheung, D.E. Freeman, W.H. Parkinson, Planet. Space Sci. 40, 185–192 (1992)Google Scholar
  78. Zhao, Z., R.E. Stickel, P.H. Wine, Geophys. Res. Lett. 22, 615–618 (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Peter Warneck
    • 1
  • Jonathan Williams
    • 1
  1. 1.Max Planck Institute for ChemistryMainzGermany

Personalised recommendations