Advertisement

Structure of the Atmosphere

  • Peter Warneck
  • Jonathan Williams
Chapter
  • 864 Downloads

Abstract

Atmospheric pressure and density decrease quasi-exponentially with increasing altitude in accordance with the barometric law. Figure 3.1 presents an idealized vertical temperature profile of the atmosphere and the nomenclature adopted by international convention to identify different altitude regimes, which are distinguished by the prevailing sign of the temperature gradient.

Keywords

Zonal Wind Geostrophic Wind Hadley Cell Standard Atmosphere Fossil Fuel Consumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bender, M., T. Ellis, P. Tans, R. Francey, D. Lowe, Glob. Biogeochem. Cycles 10, 9–21 (1996)Google Scholar
  2. Benedict, F.G., Publication No. 166 (Carnegie Institute, Washington, DC, 1912)Google Scholar
  3. Callendar, G.S., Quart. J. Roy. Meteor. Soc. 66, 395–400 (1940)Google Scholar
  4. Glueckauf, E., The composition of atmospheric air, in Compendium of Meteorology, ed. by T.F. Mahone (American Meteorological Society, Boston, 1951), pp. 3–12Google Scholar
  5. Keeling, R.F., S.C. Piper, M. Heimann, Nature 381, 218–221 (1996)Google Scholar
  6. Keeling, R.F., S.R. Shertz, Nature 358, 723–727 (1992)Google Scholar
  7. Krogh, A., Kgl. Danske Videns. Sel. Math-Fys. Medd. 1, 1–19 (1919)Google Scholar
  8. Machta, L., E. Hughes, Science 168, 1582–1584 (1970)Google Scholar
  9. Ozima, M., F.A. Podosek, Noble Gas Geochemistry, 2nd edn. (Cambridge University Press, Cambridge, 2001)Google Scholar
  10. Barnett, J.J., M. Corney, Handbook for Middle Atmosphere Program, vol. 16, ed. by K. Labitzke, J.J. Barnett, B. Edwards (SCOSTEP, University of Illinois, Urbana, 1985)Google Scholar
  11. Committee on Extension of US Standard Atmosphere (COESA) US Standard Atmosphere 1976 (U.S. Government Office, Washington, DC, 1996)Google Scholar
  12. Jöckel, P., R. Sander, A. Kerkweg, H. Tost, J. Lelieveld, Atmos. Chem. Phys. 5, 433–444 (2005)Google Scholar
  13. Raschke, E., C. Stubenrauch, Water vapor in the atmosphere, in Landolt-Börnstein, Group V: Geophysics, vol. 6, ed. by M. Hantel (Springer, Berlin, 2005), pp. 5/1–5/18Google Scholar
  14. Röckner, E., R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, L. Kornblueh, E. Manzini, U. Schlese, U. Schulzweida, J. Climate 19, 3771–3791 (2006)Google Scholar
  15. Trenberth, K.E., C.J. Guillemont, J. Geophys. Res. 99, 23079–23088 (1994)Google Scholar
  16. Warneck, P., Chemistry of the Natural Atmosphere (Academic Press, San Diego, 2000), Copyright ElsevierGoogle Scholar
  17. Barnett, J.J., M. Corney, Handbook for Middle Atmosphere Program, vol. 16, ed. by K. Labitzke, J.J. Barnett, B. Edwards (SCOSTEP, University of Illinois, Urbana, 1985)Google Scholar
  18. Speth, P, R.A. Madden, in Meteorology, ed. by G. Fischer. Landolt-Börnstein, New Series V/4a (Springer, Berlin, 1988), pp. 140–438Google Scholar
  19. Warneck, P., Chemistry of the Natural Atmosphere, 2nd edn. (Academic Press, San Diego, 2000)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Peter Warneck
    • 1
  • Jonathan Williams
    • 1
  1. 1.Max Planck Institute for ChemistryMainzGermany

Personalised recommendations