The Role of Forests in Global Carbon Budgeting

  • Deborah Spalding
  • Elif Kendirli
  • Chadwick Dearing Oliver


While forests have the capacity to sequester significant amounts of carbon, the natural and anthropogenic processes driving carbon fluxes in forests are complex and difficult to measure. However, since land use change is estimated to be the second largest source of carbon emissions to the atmosphere after the burning of fossil fuels, understanding and quantifying forest carbon sinks and sources is an important part of global carbon budgeting and climate change policy design. Although carbon emissions from land use change have remained fairly steady over the last few decades, there have been significant regional variations within this trend. Specifically, deforestation rates in the tropics, particularly in Asia, have grown significantly. In contrast, forests outside the tropics have been sequestering incremental carbon due to CO2 fertilization and due to forest regrowth on lands that had been cleared for agriculture prior to industrialization. Land use change is widely considered the most difficult component to quantify in the global carbon budget. The underlying data is often incomplete and may not be comparable across countries or regions due to different definitions of forest cover and land uses. Deforestation rates in the tropics are particularly difficult to determine due to these factors as well as differences in the way land degradation, such as selective logging and fuelwood removals, are accounted for in national statistics.


Carbon Emission Carbon Sequestration Carbon Flux Carbon Budget Carbon Sink 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achard F, Eva HD, Mayaux P, Stibig HJ, Belward A (2004) Improved estimates of net carbon emissions from land cover change in the tropics in the 1990s. Global Biogeochem Cycles 18:12pCrossRefGoogle Scholar
  2. Adams J (2011) Estimates of total carbon storage in various important reservoirs. Environmental Sciences Division, Oak Ridge National Laboratory, TN. Accessed March 2011
  3. Alexandrov GA, Yamagata Y, Oikawa T (1999) Towards a model for projecting net ecosystem production of the world forests. Ecol Model 123:183–191CrossRefGoogle Scholar
  4. Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I, Feld CB (2005) Drier summers cancel out the CO2 uptake enhancement induced by warming springs. Proc Natl Acad Sci USA 102(31):10823–10827PubMedCrossRefGoogle Scholar
  5. Atjay GL, Ketney P, Duvigneaud P (1979) Terrestrial primary production and phytomass. In: Bolin B, Degens ET, Kempe S, Ketner P (eds) The global carbon cycle. John Wiley & Sons, New York, pp 129–181CrossRefGoogle Scholar
  6. Aumont O, Orr JC, Monfray P, Ludwig W, Amiotte-Suchet P, Probst JL (2001) Riverine driven interhemispheric transport of carbon. Global Biogeochem Cycles 15(2):393–405CrossRefGoogle Scholar
  7. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, DiFiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NC, Natalino J, Silva M, Martinez RV (2004) Increasing biomass in Amazonian forest plots. Philos Trans R Soc Lond B Biol Sci 359:353–365Google Scholar
  8. Balshi MS, McGuire AD, Zhuang Q, Melillo JM, Kicklighter DW, Kasischke E, Wirth C, Flannigan M, Harden JW, Clein JS, Burnside TJ, McAllister J, Kurz WA, Apps M, Shvidenko A (2007) The role of historical fire disturbance in the carbno dynamics of the pan-boreal region: a process-based analysis. J Geophys Res 112, G02029-18pGoogle Scholar
  9. Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K (2001) Factors controlling long-and short-term sequestration of atmospheric CO2 in a mid-­latitude forest. Science 294(5547):1688–1691PubMedCrossRefGoogle Scholar
  10. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600CrossRefGoogle Scholar
  11. Battle M, Bender ML, Tans PP, White JWC, Ellis JT, Conway T, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science 287:2467–2470PubMedCrossRefGoogle Scholar
  12. Bergeron Y, Archambault S (1993) Decreasing frequency of forest fires in the southern boreal zone of Quebec and its relation to global warming since the end of the ‘Little Ice Age’. Holocene 3(3):255–259CrossRefGoogle Scholar
  13. Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190PubMedCrossRefGoogle Scholar
  14. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449PubMedCrossRefGoogle Scholar
  15. Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450(7166):89–92PubMedCrossRefGoogle Scholar
  16. Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116:363–372PubMedCrossRefGoogle Scholar
  17. Camill P, Lynch JA, Clark JS, Adams JB, Jordon B (2001) Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba. Can Ecosyst 4:461–478CrossRefGoogle Scholar
  18. Canadell JG, LeQuere C, Rapauch MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity and efficiency of natural sinks. PNAS 104(47):18866–18870PubMedCrossRefGoogle Scholar
  19. Carter AJ, Scholes RJ (2000) Spatial global database of soil properties. IGBP Global Soil Data Task CD-ROM, International Geosphere-Biosphere Programme (IGPB), Data Information Systems. Toulouse, FranceCrossRefGoogle Scholar
  20. Ciasis P, Rayner P, Chevallier F, Bousquet P, Logan M, Peylin P, Ramonet M (2010) Atmospheric inversions for estimating CO2 fluxes:methods and perspectives. Climatic Change 103:69–92CrossRefGoogle Scholar
  21. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51(9):723–734CrossRefGoogle Scholar
  22. Dargaville R, McGuire AD, Rayner P (2002) Estimates of large-scale fluxes in high latitudes from terrestrial biosphere models and an inversion of atmospheric CO2 measurements. Climatic Change 55(1–2):273–285CrossRefGoogle Scholar
  23. DeFries RS, Field CB, Fung I, Collatz GJ, Bounoua L (1999) Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochem Cycles 13:803–815CrossRefGoogle Scholar
  24. DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshen J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. PNAS 99(22):14256–14261PubMedCrossRefGoogle Scholar
  25. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MJ, Wisnieski J (1994) Carbon pools and fluxes of global forest ecosystems. Science 263(5144):185–190PubMedCrossRefGoogle Scholar
  26. Dolman AJ, van der Werf GR, van der Molen MK, Ganssen G, Erisman JW, Strengers B (2010) A carbon cycle science update since IPCC AR-4. Ambio 39(5–6):402–412PubMedCrossRefGoogle Scholar
  27. Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998) A large terrestrial carbon sink in north America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446PubMedCrossRefGoogle Scholar
  28. Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Change 46:115–158Google Scholar
  29. Food and Agriculture Organization of the United Nations (FAO) (2000) FRA 2000: on definitions of forest and forest change. Forest Resources Assessment Programme (FRA). Working Paper 33. RomeGoogle Scholar
  30. Fung I (2000) Variable carbon sinks. Science 290(5495):1313PubMedCrossRefGoogle Scholar
  31. Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. PNAS 102(32):11201–11206PubMedCrossRefGoogle Scholar
  32. Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. PNAS 102(32):11201–11206PubMedCrossRefGoogle Scholar
  33. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S, Naburrs G, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the northern hemisphere. Ecol Appl 12(3):891–899CrossRefGoogle Scholar
  34. Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C (2001) Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11(5):1395–1411CrossRefGoogle Scholar
  35. Gurney KR, Law RM, Denning AS, Rayner PJ, Pak BC, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fung IY, Heimann M, John J, Maki T, Maksyutov S, Peylin P, Prather M, Taguchi S (2004) Transcom 3 inversion intercomparison: model mean resuts for the estimation of seasonal carbon sources and sinks. Global Biogeochem Cycles 18: GB1010-GB1018CrossRefGoogle Scholar
  36. Gusti M, Jonas M (2010) Terrestrial full carbon account for Russia: revised uncertainty estimates and their role in a bottom-up/top-down accounting exercise. Climatic Change 103(1):159–174CrossRefGoogle Scholar
  37. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292PubMedCrossRefGoogle Scholar
  38. Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus 51B:298–313Google Scholar
  39. Houghton RA (2003a) Why are estimates of the terrestrial carbon balance so different? Glob Change Biol 9:500–509CrossRefGoogle Scholar
  40. Houghton RA (2003b) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390Google Scholar
  41. Houghton RA (2005a) Aboveground forest biomass and the global carbon balance. Glob Change Biol 11:945–958CrossRefGoogle Scholar
  42. Houghton RA (2005b) Chapter 1: Tropical deforestation as a source of greenhouse gas emissions. In: Moutinho P, Schwartzman S (eds) Tropical deforestation and climate change. Amazon Institute for Environmental Research, Washington, DCGoogle Scholar
  43. Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347CrossRefGoogle Scholar
  44. House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M (2003) Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus 55B:345–363Google Scholar
  45. Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322CrossRefGoogle Scholar
  46. Kauppi P (2003) New low estimate for carbon stock in global forest vegetation based on inventory data. Silva Fennica 37(4):451–458Google Scholar
  47. Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–221CrossRefGoogle Scholar
  48. Kurz WA, Apps MJ (1999) A 70 year retrospective analysis of carbon fluxes in the Canadian forest sector. Eco Appl 9(2):526–547PubMedCrossRefGoogle Scholar
  49. Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET (2008a) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. PNAS 105(5):1551–1555PubMedCrossRefGoogle Scholar
  50. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008b) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990PubMedCrossRefGoogle Scholar
  51. Lashoff DA, DeAngelo BJ (1997) Terrestrial ecosystem feedbacks to global climate change. Annu Rev Energy Environ 22:75–118CrossRefGoogle Scholar
  52. Lepers E, Lambin EF, Janetos AC, DeFries R, Achard F, Ramankutty N, Scholes RJ (2005) A synthesis of information on rapid land-cover change for the period 1981–2000. Bioscience 55(2):115–124CrossRefGoogle Scholar
  53. Liski J, Korotkov AV, Prins CFL, Karjalainen T, Victor DG, Kauppi PE (2003) Increased carbon sink in temperate and boreal forests. Climatic Change 61(1–2):89–99CrossRefGoogle Scholar
  54. Logan JA, Regniere J, Power JA (2003) Assessing the impacts of global warming on forest pest dynamics front. Ecol Environ 1(3):130–137Google Scholar
  55. Makela A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M, Agren GI, Oliver CD, Puttonen P (2000) Process based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20:289–298PubMedGoogle Scholar
  56. Malhi Y (2010) The carbon balance of tropical forest regions, 1990–2005. Curr Opin Environ Sustainab 2(4):237–244CrossRefGoogle Scholar
  57. Malhi Y, Roberts JT, Betts RA, Killeen TJ, Wenhong L, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319(5860):169–172PubMedCrossRefGoogle Scholar
  58. Manning AC, Keeling RF (2006) Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flasks sampling network. Tellus 58B:95–116Google Scholar
  59. Matamala R, Gonzales-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest npp and soil c sequestration potential. Science 302:1385–1387PubMedCrossRefGoogle Scholar
  60. Matthews E (2001) Understanding the FRA 2000. Forest briefing no. 1, World Resources Institute, Washington, DC, 12pGoogle Scholar
  61. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, MacDonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the arctic to climate change. Ecol Monogr 79(4):523–555CrossRefGoogle Scholar
  62. Mooney J, Saugier B, Mooney HA (2001) Terrestrial global productivity. Academic Press, San DiegoCrossRefGoogle Scholar
  63. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981–1991. Nature 386:698–702CrossRefGoogle Scholar
  64. Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. PNAS 98(26):14784–14789PubMedCrossRefGoogle Scholar
  65. Nilsson S, Shvidenko A, Jonas M, McCallam I, Thomson A, Balzter H (2007) Uncertainties of a regional terrestrial biota full carbon account: a systems analysis. Water Air Soil Pollut Focus 7(4/5):425–441CrossRefGoogle Scholar
  66. Oliver CD, Larson BC (1996) Forest stand dynamics, updateth edn. Wiley, New YorkGoogle Scholar
  67. Oren R et al (2001) Soil infertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472PubMedCrossRefGoogle Scholar
  68. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent land- and atmosphere-based US carbon sinks estimates. Science 292:2316–2320PubMedCrossRefGoogle Scholar
  69. Peylin P, Baker D, Sarmiento J, Ciais P, Bousquet P (2002) Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data. J Geophys Res 107(D19): ACH 5–1 – ACH 5–17Google Scholar
  70. Phillips OL, Aragao L, Lewis SL, Fisher JB, Lloyd J, Lopez-Gonzales G, Mahli Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker R, Bánki O, Blanc L, Bonal D, Brando P, Chave J, de Oliveira ATA, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Patino S, Penuela MC, Prieto A, Ramirez F, Schwarz M, Silva J, Silviera M, Thomas AS, ter Steege H, Stropp J, Vasquez R, Zelazowski P, Davila EA, Andelman S, Andrade A, Chao K-J, Erwin T, DiFiore A, Honorio E, Keeling H, Killeen TJ, Laurance WF, Cruz AP, Pitman NCA, Vargas PN, Ramirez-Angulo H, Rudas A, Salamao R, Silva N, Terbrgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323(5919):1344–1347PubMedCrossRefGoogle Scholar
  71. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nunez PV (1998) Changes in the carbon balance of tropical forests: evidence from land-term plots. Science 282:439–442CrossRefGoogle Scholar
  72. Plattner GK, Joos F, Stocker TF (2002) Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochem Cycles 16(4):12pCrossRefGoogle Scholar
  73. Prentice IC (2001) The carbon cycle and atmospheric carbon dioxide. Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report, Chapter 3, Pp 183–239Google Scholar
  74. Ramankutty N, Gibbs HK, Achard F, DeFries R, Foley JA, Houghton RA (2007) Challenges to estimating carbon emissions from tropical deforestation. Glob Change Biol 13:51–66CrossRefGoogle Scholar
  75. Raupach MR, Marland G, Clais P, LeQuere C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. PNAS 104(24):10288–10293PubMedCrossRefGoogle Scholar
  76. Ridder RM (2007) Global forests resources assessment 2010: options and recommendations for a global remote sensing survey of forests, Forest Resources Assessment Programme, Working Paper 141, 68pGoogle Scholar
  77. Schimel DS (2007) Carbon cycle conundrums. PNAS 104(47):18353–18354PubMedCrossRefGoogle Scholar
  78. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlinstein P, Goodale C, Heimann M, Houghton RA, Melillo JJ, Moore B III, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172PubMedCrossRefGoogle Scholar
  79. Shvidenko A, Schepaschenko D, McCallam I, Nilsson S (2010) Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers? Climatic Change 103:137–157CrossRefGoogle Scholar
  80. Stephens BB, Gurney KR, Tans PP, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, Aoki S, Machida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M, Shibistova O, Langenfelds RL, Steele LP, Francey RJ, Denning AS (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316:1732–1735PubMedCrossRefGoogle Scholar
  81. UNFAO (2000) Global forest resources assessment 2000. Food and agriculture organization of the United Nations, FAO Forestry Paper 140, 481ppGoogle Scholar
  82. Van Oijen M, Rougier J, Smith R (2005) Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiol 25:915–927PubMedGoogle Scholar
  83. Waggoner PE (2009) Forest inventories: discrepancies and uncertainties. RFF DP 09–29. Resources for the Future, 45pGoogle Scholar
  84. Zaehle S, Sitch S, Smith B, Hatterman F (2005) Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Global Biogeochem Cycles 19(3), GB2030-16pGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Deborah Spalding
    • 1
  • Elif Kendirli
    • 2
  • Chadwick Dearing Oliver
    • 3
  1. 1.Working Lands Investment Partners, LLCNew HavenUSA
  2. 2.WashingtonUSA
  3. 3.Yale School of Forestry and Environmental StudiesNew HavenUSA

Personalised recommendations