Carbon Dynamics in the Temperate Forest

Chapter

Abstract

Twenty-five percent of the world’s forests are in the temperate biome. They include a wide range of forest types, and the exact boundaries with boreal forests to the north and tropical forests to the south are not always clear. There is a great variety of species, soil types, and environmental conditions which lead to a diversity of factors affecting carbon storage and flux. Temperate forests have been severely impacted by human use – throughout history, all but about 1% have been logged-over, converted to agriculture, intensively managed, grazed, or fragmented by sprawling development. Nevertheless, they have proven to be resilient – mostly second growth forests now cover about 40–50% of the original extent of the biome. Although remaining intact temperate forests continue to be fragmented by development, particularly in North America, there is no large-scale deforestation at present, nor is there likely to be in the future. The status of the temperate biome as a carbon reservoir and atmospheric CO2 sink rests mainly on strong productivity and resilience in the face of disturbance. The small “sink” status of temperate forests could change to a “source” status if the balance between photosynthesis and respiration shifts.

Keywords

Fine Root Carbon Stock Carbon Storage Temperate Forest Coarse Woody Debris 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aber JD, Ollinger SV, Driscoll CT, Likens GE, Holmes RT, Freuder RJ, Goodale CL (2002) Inorganic nitrogen losses from a forested ecosystem in response to physical, chemical, biotic, and climatic perturbations. Ecosystems 5:648–658Google Scholar
  2. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. Bioscience 48:921–934CrossRefGoogle Scholar
  3. Abrams MD (1992) Fire and the development of Oak Forests - in Eastern North-America, Oak distribution reflects a variety of ecological paths and disturbance conditions. Bioscience 42:346–353CrossRefGoogle Scholar
  4. Abrams MD (1998) The red maple paradox. Bioscience 48:355–364CrossRefGoogle Scholar
  5. Allard V, Ourcival JM, Rambal S, Joffre R, Rocheteau A (2008) Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Glob Change Biol 14:714–725CrossRefGoogle Scholar
  6. Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc Natl Acad Sci USA 102:10823–10827PubMedCrossRefGoogle Scholar
  7. Archibold O (1995) Ecology of world vegetation. Chapman & Hall, New YorkCrossRefGoogle Scholar
  8. Auclair AND, Carter TB (1993) Forest wildfires as a recent source of CO2 at Northern latitudes. Can J Forest Res 23:1528–1536CrossRefGoogle Scholar
  9. Augustaitis A, Bytnerowicz A (2008) Contribution of ambient ozone to scots pine defoliation and reduced growth in the Central European forests: a Lithuanian case study. Environ Pollut 155:436–445PubMedCrossRefGoogle Scholar
  10. Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294:1688–1691PubMedCrossRefGoogle Scholar
  11. Bascietto M, Cherubini P, Scarascia-Mugnozza G (2004) Tree rings from a European beech forest chronosequence are useful for detecting growth trends and carbon sequestration. Can J Forest Res 34:481–492CrossRefGoogle Scholar
  12. Bauer GA, Bazzaz FA, Minocha R, Long S, Magill A, Aber J, Berntson GM (2004) Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. Forest Ecol Manag 196:173–186CrossRefGoogle Scholar
  13. Beerling DJ, Heath J, Woodward FI, Mansfield TA (1996) Drought-CO2 interactions in trees: observations and mechanisms. New Phytol 134:235–242CrossRefGoogle Scholar
  14. Bohlen PJ, Groffman PM, Fahey TJ, Fisk MC, Suarez E, Pelletier DM, Fahey RT (2004) Ecosystem consequences of exotic earthworm invasion of north temperate forests. Ecosystems 7:1–12CrossRefGoogle Scholar
  15. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity - evidence since the middle of the 20th century. Glob Change Biol 12:862–882CrossRefGoogle Scholar
  16. Borken W, Savage K, Davidson EA, Trumbore SE (2006) Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob Change Biol 12:177–193CrossRefGoogle Scholar
  17. Bouwman AF, Van Vuuren DP, Derwent RG, Posch M (2002) A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut 141:349–382CrossRefGoogle Scholar
  18. Bowden RD, Rullo G, Stevens GR, Steudler PA (2000) Soil fluxes of carbon dioxide, nitrous oxide, and methane at a productive temperate deciduous forest. J Environ Qual 29:268–276CrossRefGoogle Scholar
  19. Boyce RL, Friedland AJ, Vostral CB, Perkins TD (2003) Effects of a major ice storm on the foliage of four New England conifers. Ecoscience 10:342–350Google Scholar
  20. Bradford JB, Birdsey RA, Joyce LA, Ryan MG (2008) Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests. Glob Change Biol 14(12):2882–2897. doi:10.1111/j.1365-2486.2008.01686.xCrossRefGoogle Scholar
  21. Bragg DC, Shelton MG, Zeide B (2003) Impacts and management implications of ice storms on forests in the southern United States. Forest Ecol Manag 186:99–123CrossRefGoogle Scholar
  22. Bryant D, Nielsen D, Tangley L (1997) The last frontier forests: ecosystems and economies on the edge. World Resources Institute, Washington, DCGoogle Scholar
  23. Busing RT, White RD, Harmon ME, White PS (2009) Hurricane disturbance in a temperate deciduous forest: patch dynamics, tree mortality, and coarse woody detritus. Plant Ecol 201:351–363CrossRefGoogle Scholar
  24. Carrara A, Kowalski AS, Neirynck J, Janssens IA, Yuste JC, Ceulemans R (2003) Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agric Forest Meteorol 119:209–227CrossRefGoogle Scholar
  25. Changnon SA (2008) Space and time distributions of major winter storms in the United States. Natural Hazards 45:1–9CrossRefGoogle Scholar
  26. Cisneros-Dozal LM, Trumbore SE, Hanson PJ (2007) Effect of moisture on leaf litter decomposition and its contribution to soil respiration in a temperate forest. J Geophys Res Biogeosci 112:10CrossRefGoogle Scholar
  27. Crow TR (1988) Reproductive mode and mechanisms for self-replacement of Northern Red Oak (Quercus-Rubra) - a review. Forest Sci 34:19–40Google Scholar
  28. Crutzen PJ, Goldhammer JG (eds) (1993) Fires in the environment: the ecological, atmospheric, and climatic importance of vegetation fires. Wiley, New YorkGoogle Scholar
  29. Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB (2002) Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric Forest Meteorol 113(1–4):3–19CrossRefGoogle Scholar
  30. Dalal RC, Allen DE (2008) Greenhouse gas fluxes from natural ecosystems. Aust J Bot 56:369–407CrossRefGoogle Scholar
  31. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51:723–734CrossRefGoogle Scholar
  32. De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531PubMedCrossRefGoogle Scholar
  33. de Jong BHJ, Cairns M, Haggerty P, Ramírez-Marcial N, Ochoa-Gaono S, Mendoza-Vega J, González-Espinosa M, March-Mifsut L (1999) Land-use change and carbon flux between 1970s and 1990s in the central highlands of Chiapas, México. Environ Manage 23:373–1285CrossRefGoogle Scholar
  34. De Vries W, Reinds GJ, Gundersen P, Sterba H (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Glob Change Biol 12:1151–1173CrossRefGoogle Scholar
  35. Degen T, Devillez F, Jacquemart AL (2005) Gaps promote plant diversity in beech forests (Luzulo-Fagetum), North Vosges, France. Ann Forest Sci 62:429–440CrossRefGoogle Scholar
  36. Delpierre N, Soudani K, Francois C, Kostner B, Pontailler JY, Nikinmaa E, Misson L, Aubinet M, Bernhofer C, Granier A, Grunwald T, Heinesch B, Longdoz B, Ourcival JM, Rambal S, Vesala T, Dufrene E (2009) Exceptional carbon uptake in European forests during the warm spring of 2007: a data-model analysis. Glob Change Biol 15:1455–1474CrossRefGoogle Scholar
  37. DeLucia EH, Moore DJ, Norby RJ (2005) Contrasting responses of forest ecosystems to rising atmospheric CO2: implications for the global C cycle. Glob Biogeochem Cycles 19:GB3006CrossRefGoogle Scholar
  38. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190PubMedCrossRefGoogle Scholar
  39. Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ, Cronan CS, Eagar C, Lambert KF, Likens GE, Stoddard JL, Weathers KC (2001) Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience 51:180–198CrossRefGoogle Scholar
  40. Edwards NT, Johnson D, McLaughlin S, Harris W (1989) Carbon dynamics and productivity. In: Johnson D, VanHook R (eds) Analysis of biogeochemical cycling processes in walker branch watershed. Springer, New York, pp 197–232CrossRefGoogle Scholar
  41. Elfving B, Tegnhammar L, Tveite B (1996) Studies on growth trends of forests in Sweden and Norway. In: Spiecker H, Mielikäinen K, Köhl K, Skovsgaard JP (eds) Growth trends in European forests. Springer, BerlinGoogle Scholar
  42. Ericksson H, Karlsson K (1996) Long-term Changes in Site Index in Growth and Yield Experiements with Norway Spruce (Picea abies, [L.] Karst) and Scots Pine (Pinus sylvestris, L.). In: Spiecker H, Mielikäinen K, Köhl K, Skovsgaard JP (eds) Growth trends in European forests. Springer, BerlinGoogle Scholar
  43. Eswaran H, Van den Berg E, Reich PB, Kimble J (1995) Global soil carbon resources. In: Lal R, Kimble JM, Levine E (eds) Soils and global change. Lewis Publishers is an imprint of CRC Press, Boca Raton, pp 27–43Google Scholar
  44. Evans C, Goodale C, Caporn S, Dise N, Emmett B, Fernandez I, Field C, Findlay S, Lovett G, Meesenburg H, Moldan F, Sheppard L (2008) Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments. Biogeochemistry 91:13–35CrossRefGoogle Scholar
  45. Fahey TJ, Siccama TG, Driscoll CT, Likens GE, Campbell J, Johnson CE, Battles JJ, Aber JD, Cole JJ, Fisk MC, Groffman PM, Hamburg SP, Holmes RT, Schwarz PA, Yanai RD (2005) The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75:109–176CrossRefGoogle Scholar
  46. Fang JY, Chen AP, Peng CH, Zhao SQ, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292(5525):2320–2322PubMedCrossRefGoogle Scholar
  47. Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH (2005) Biomass carbon accumulation by Japan’s forests from 1947 to 1995. Global Biogeochem Cycles 19:GB2004CrossRefGoogle Scholar
  48. FAO (2011) State of the World’s forests 2011. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  49. Felzer BS, Cronin T, Reilly JM, Melilloa JM, Wang XD (2007) Impacts of ozone on trees and crops. CR Geosci 339:784–798CrossRefGoogle Scholar
  50. Finzi AC, Van Breemen N, Canham CD (1998) Canopy tree soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecol Appl 8:440–446Google Scholar
  51. Fissore C, Giardina CP, Swanston CW, King GM, Kolka RK (2009) Variable temperature sensitivity of soil organic carbon in North American forests. Glob Change Biol 15:2295–2310CrossRefGoogle Scholar
  52. Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32CrossRefGoogle Scholar
  53. Garcia-Oliva F, Hernandez G, Lancho JFG (2006) Comparison of ecosystem C pools in three forests in Spain and Latin America. Ann Forest Sci 63(5):519–523CrossRefGoogle Scholar
  54. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu SR, Nabuurs GJ, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12:891–899CrossRefGoogle Scholar
  55. Goodnow R, Sullivan J, Amacher GS (2008) Ice damage and forest stand management. J Forest Econ 14:268–288CrossRefGoogle Scholar
  56. Gough CM, Vogel CS, Schmid HP, Curtis PS (2008) Controls on annual forest carbon storage: lessons from the past and predictions for the future. Bioscience 58:609–622CrossRefGoogle Scholar
  57. Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271:1576–1578CrossRefGoogle Scholar
  58. Gower ST, Vogt KA, Grier CC (1992) Carbon dynamics of rocky-mountain Douglas-Fir - influence of water and nutrient availability. Ecol Monogr 62:43–65CrossRefGoogle Scholar
  59. Grimm EC (1984) Fire and other factors controlling the big woods vegetation of Minnesota in the mid-19th century. Ecol Monogr 54:291–311CrossRefGoogle Scholar
  60. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360CrossRefGoogle Scholar
  61. Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH (2002) Forest carbon balance under elevated CO2. Oecologia 131:250–260CrossRefGoogle Scholar
  62. Hanson JJ, Lorimer CG (2007) Forest structure and light regimes following moderate wind storms: implications for multi-cohort management. Ecol Appl 17:1325–1340PubMedCrossRefGoogle Scholar
  63. Hanson PJ, Edwards NT, Tschaplinski TJ, Wullschleger SD, Joslin JD (2003) Estimating the net primary and net ecosystem production of a Southeastern upland Quercus forest from an 8-year biometric record. In: Hanson PJ, Wullschleger SD (eds) North American temperate deciduous forest responses to changing precipitation regimes. Springer, New York, Pages 472CrossRefGoogle Scholar
  64. Hanson PJ, Weltzin JF (2000) Drought disturbance from climate change: response of United States forests. Sci Total Environ 262:205–220PubMedCrossRefGoogle Scholar
  65. Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinski TJ, Gunderson CA (2005) Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Glob Change Biol 11:1402–1423CrossRefGoogle Scholar
  66. Harris WF, Sollins P, Edwards NT, Dinger BE, Shugart HH (1975) Analysis of carbon flow and productivity in a temperate deciduous forest ecosystem. In: Reichle D, Franklin J, Goodall D (eds) Productivity of world ecosystems. National Academy of Sciences, Washington, DC, pp 116–122Google Scholar
  67. Hasenauer H, Nemani RR, Schadauer K, Running SW (1999) Forest growth response to changing climate between 1961 and 1990 in Austria. Forest Ecol Manag 122:209–219CrossRefGoogle Scholar
  68. Hattenschwiler S, Korner C (2003) Does elevated CO2 facilitate naturalization of the non-indigenous prunus laurocerasus in Swiss temperate forests? Funct Ecol 17:778–785CrossRefGoogle Scholar
  69. Heath LS, Kauppi PE, Burschel P, Gregor HD, Guderian R, Kohlmaier GH, Lorenz S, Overdieck D, Scholz F, Thomasius H, Weber M (1993) Contribution of temperate forests to the worlds carbon budget. Water Air Soil Pollut 70:55–69CrossRefGoogle Scholar
  70. Hinckley TM, Teskey RO, Duhme F, Richter H (1981) Temperate hardwood forests. In: Kozlowski TT (ed) Water deficits and plant growth, vol 6, Woody plant communities. Academic, New YorkGoogle Scholar
  71. Holland GJ, Webster PJ (2007) Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend? Philos Trans R Soc A 365:2695–2716CrossRefGoogle Scholar
  72. Hooker TD, Compton JE (2003) Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol Appl 13:299–313CrossRefGoogle Scholar
  73. Houghton RA (1995) Changes in the storage of terrestrial carbon since 1850. In: Lal R, Kimble J, Levine E, Stewart B (eds) Soils and global change. Lewis Publishers, New YorkGoogle Scholar
  74. Innes JL, Peterson DL (2001) Proceedings introduction: managing forests in a greenhouse world -context and challenges. In: Peterson DL, Innes JL, O’Brian K (eds) Climate change, carbon, and forestry in Northwestern North America: Proceedings of a workshop November 14–15 2001, Orcas Island, Washington. General Technical Report PNW-GTR-614, USDA Forest ServiceGoogle Scholar
  75. IPCC (2000) IPCC Special Report: land use, land use change, and forestry. Intergovernmental Panel on Climate ChangeGoogle Scholar
  76. IPCC (2007) Climate change 2007: Synthesis Report. Intergovernmental Panel on Climate ChangeGoogle Scholar
  77. Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs GJ, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze ED, Valentini R, Dolman AJ (2003) Europe’s Terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300:1538–1542PubMedCrossRefGoogle Scholar
  78. Jarvis PG (1989) Atmospheric carbon-dioxide and forests. Philos Trans R Soc Lond B Biol Sci 324:369–392CrossRefGoogle Scholar
  79. Jassal RS, Black TA, Cai TB, Morgenstern K, Li Z, Gaumont-Guay D, Nesic Z (2007) Components of ecosystem respiration and an estimate of net primary productivity of an intermediate-aged Douglas-fir stand. Agric Forest Meteorol 144:44–57CrossRefGoogle Scholar
  80. Jassal RS, Black TA, Chen BZ, Roy R, Nesic Z, Spittlehouse DL, Trofymow JA (2008) N2O emissions and carbon sequestration in a nitrogen-fertilized Douglas fir stand. J Geophys Res-Biogeosci 113Google Scholar
  81. Juarez RIN, Chambers JQ, Zeng HC, Baker DB (2008) Hurricane driven changes in land cover create biogeophysical climate feedbacks. Geophys Res Lett 35:5CrossRefGoogle Scholar
  82. Kashian DM, Romme WH, Tinker DB, Turner MG, Ryan MG (2006) Carbon storage on landscapes with stand-replacing fires. Bioscience 56:598–606CrossRefGoogle Scholar
  83. Kashian DM, Tinker DB, Turner MG, Scarpace FL (2004) Spatial heterogeneity of lodgepole pine sapling densities following the 1988 fires in Yellowstone National Park, Wyoming, USA. Can J Forest Res 34:2263–2276CrossRefGoogle Scholar
  84. Kasischke ES (2000) Effects of climate change and fire on carbon storage in North American boreal forests. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the Boreal forest. Springer, New YorkGoogle Scholar
  85. Kasischke ES, Christensen NL, Stocks BJ (1995) Fire, global warming, and the carbon balance of Boreal forests. Ecol Appl 5:437–451CrossRefGoogle Scholar
  86. Keeling CD, Whorf TP, Wahlen M, Vanderplicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon-dioxide since 1980. Nature 375:666–670CrossRefGoogle Scholar
  87. Kelty MJ (2006) The role of species mixtures in plantation forestry. Forest Ecol Manag 233:195–204CrossRefGoogle Scholar
  88. Knebel L, Wentworth TR (2007) Influence of fire and southern pine beetle on pine-dominated forests in the Linville Gorge Wilderness, North Carolina. Castanea 72:214–225CrossRefGoogle Scholar
  89. Knohl A, Schulze ED, Kolle O, Buchmann N (2003) Large carbon uptake by an unmanaged 250-year-old deciduous forest in central Germany. Agric Forest Meteorol 118:151–167CrossRefGoogle Scholar
  90. Korner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619Google Scholar
  91. Korner C, Asshoff R, Bignucolo O, Hattenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362PubMedCrossRefGoogle Scholar
  92. Kozovits AR, Matyssek R, Blaschke H, Gottlein A, Grams TEE (2005) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O-3 concentrations throughout two subsequent growing seasons. Glob Change Biol 11:1387–1401CrossRefGoogle Scholar
  93. Kruger EL, Reich PB (1997) Responses of hardwood regeneration to fire in mesic forest openings. I. Post-fire community dynamics. Can J Forest Res 27:1822–1831CrossRefGoogle Scholar
  94. Kurz WA, Apps MJ (1999) A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–547CrossRefGoogle Scholar
  95. Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET (2008) Risk of natural disturbances makes future contribu­tion of Canada’s forests to the global carbon cycle highly uncerain. Proc Natl Acad Sci USA 105:1551–1555PubMedCrossRefGoogle Scholar
  96. Law BE, Ryan MG, Anthoni PM (1999) Seasonal and annual respiration of a ponderosa pine ecosystem. Glob Change Biol 5:169–182CrossRefGoogle Scholar
  97. Law BE, Sun OJ, Campbell J, Van Tuyl S, Thornton PE (2003) Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Glob Change Biol 9:510–524CrossRefGoogle Scholar
  98. Law BE, Waring RH, Anthoni PM, Aber JD (2000) Measurements of gross and net ecosystem productivity and water vapour exchange of a pinus ponderosa ecosystem, and an evaluation of two generalized models. Glob Change Biol 6:155–168CrossRefGoogle Scholar
  99. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379PubMedCrossRefGoogle Scholar
  100. Li JH, Powell TL, Seiler TJ, Johnson DP, Anderson HP, Bracho R, Hungate BA, Hinkle CR, Drake BG (2007) Impacts of hurricane Frances on Florida scrub-oak ecosystem processes: defoliation, net CO2 exchange and interactions with elevated CO2. Glob Change Biol 13:1101–1113CrossRefGoogle Scholar
  101. Likens GE, Borman FH (1995) Biogeochemistry of a forested wateshed. Springer, New YorkCrossRefGoogle Scholar
  102. Litton CM, Ryan MG, Knight DH (2004) Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecol Appl 14:460–475CrossRefGoogle Scholar
  103. Luyssaert S, Inglima I, Jung M, Richardson AD, Reichsteins M, Papale D, Piao SL, Schulzes ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beers C, Bernhoffer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grunwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolar P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537CrossRefGoogle Scholar
  104. Magill A, Aber JD, Berntson GM, McDowell WH, Nadelhoffer KJ, Mellilo JM, Steudler PA (2000) Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystem 3:238–253CrossRefGoogle Scholar
  105. Maier CA, Kress LW (2000) Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can J Forest Res 30:347–359Google Scholar
  106. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740CrossRefGoogle Scholar
  107. Martin PH, Nabuurs GJ, Aubinet M, Karjalainen T, Vine EL, Kinsman J, Heath LS (2001) Carbon sinks in temperate forests. Annu Rev Energ Env 26:435–465CrossRefGoogle Scholar
  108. Martinez-Vilalta J, Lopez BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob Change Biol 14:2868–2881CrossRefGoogle Scholar
  109. Mather A (1990) Global forest resources. Timber Press, PortlandGoogle Scholar
  110. McCarthy HR, Oren R, Kim HS, Johnsen KH, Maier C, Pritchard SG, Davis MA (2006) Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere. J Geophys Res Atmos 111:10CrossRefGoogle Scholar
  111. McMahon SM, Parker GG, Miller DR (2010) Evidence for a recent increase in forest growth. Proc Natl Acad Sci USA 107(8):3611–3615. doi:10.1073/pnas.0912376107PubMedCrossRefGoogle Scholar
  112. McNab WH, Avers PE (1994) Ecological subregions of the United States: Section descriptions. Ecosystem Management Report WO-WSA-5, U.S. Department of Agriculture, Washington, DCGoogle Scholar
  113. McNab WH, Greenberg CH, Berg EC (2004) Landscape distribution and characteristics of large hurricane-related canopy gaps in a southern Appalachian watershed. Forest Ecol Manag 196:435–447CrossRefGoogle Scholar
  114. McNulty SG (2000) Hurricane impacts on US forest carbon sequestration. In: Advances in terrestrial ecosystem: carbon inventory measurements and monitoring conference. Elsevier Sci Ltd, Raleigh, pp S17-S24Google Scholar
  115. Mendoza-Ponce A, Galicia L (2010) Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in central Mexico. Forestry 83(5):497–506. doi:10.1093/forestry/cpq032CrossRefGoogle Scholar
  116. Morehouse K, Johns T, Kaye J, Kaye A (2008) Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. Forest Ecol Manag 255:2698–2708CrossRefGoogle Scholar
  117. Morrison IK (1990) Organic-Matter and mineral distribution in an Old-Growth Acer-Saccharum forest near the northern limit of its range. Canadian journal of forest Research-Revue canadienne de recherche forestiere 20:1332–1342CrossRefGoogle Scholar
  118. Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1 degrees x 1 degrees fire history reconstruction for the 20th century. Glob Change Biol 11:398–420CrossRefGoogle Scholar
  119. Nabuurs GJ, Schelhaas MJ, Mohren GMJ, Field CB (2003) Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Glob Change Biol 9:152–160CrossRefGoogle Scholar
  120. Nabuurs GJ, Thurig E, Heidema N, Armolaitis K, Biber P, Cienciala E, Kaufmann E, Makipaa R, Nilsen P, Petritsch R, Pristova T, Rock J, Schelhaas MJ, Sievanen R, Somogyi Z, Vallet P (2008) Hotspots of the European forests carbon cycle. Forest Ecol Manag 256:194–200CrossRefGoogle Scholar
  121. Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148CrossRefGoogle Scholar
  122. Nagel TA, Svoboda M, Diaci J (2006) Regeneration patterns after intermediate wind disturbance in an old-growth fagus-abies forest in southeastern Slovenia. Forest Ecol Manag 226(1–3):268–278. doi:10.1016/j.foreco.2006.01.039CrossRefGoogle Scholar
  123. Nagel TA, Svoboda M (2008) Gap disturbance regime in an old-growth fagus-abies forest in the Dinaric mountains, Bosnia-Herzegovina. Can J Forest Res 38:2728–2737CrossRefGoogle Scholar
  124. NIFC (2011) Wildland fire statistics 1960–2010. National Interagency Fire Center. http://www.nifc.gov/fire_info/fires_acres.htm. Accessed 27 Apr 2011
  125. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056PubMedCrossRefGoogle Scholar
  126. Norby RJ, Luo YQ (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293CrossRefGoogle Scholar
  127. Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 - do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280CrossRefGoogle Scholar
  128. Ollinger SV, Aber JD, Reich PB, Freuder RJ (2002) Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Glob Change Biol 8:545–562CrossRefGoogle Scholar
  129. Ollinger SV, Richardson A, Martin ME, Hollinger D, Frolking S, Reich PB, Plourde L, Katul G, Munger JW, Oren R, Smith M-L, Paw KT, Bolstad PV, Cook BD, Day M, Martin T, Monson R, Schmid HP (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proc Natl Acad Sci USA 105:19336–19341PubMedCrossRefGoogle Scholar
  130. Ordonez JAB, de Jong BHJ, Garcia-Oliva F, Avina FL, Perez JV, Guerrero G, Martinez R, Masera O (2008) Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the central highlands of Michoacan, Mexico. Forest Ecol Manag 255:2074–2084CrossRefGoogle Scholar
  131. Palmer MW, McAlister SD, Arevalo JR, DeCoster JK (2000) Changes in the understory during 14 years following catastrophic windthrow in two Minnesota forests. J Veg Sci 11:841–854CrossRefGoogle Scholar
  132. Papaik MJ, Canham CD (2006) Species resistance and community response to wind disturbance regimes in northern temperate forests. J Ecol 94:1011–1026CrossRefGoogle Scholar
  133. Papale D, Valentini A (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Change Biol 9(4):525–535CrossRefGoogle Scholar
  134. Pastor J, Post WM (1988) Response of northern forests to CO2-induced climate change. Nature 334:55–58CrossRefGoogle Scholar
  135. Peichl M, Arain AA (2006) Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric Forest Meteorol 140:51–63CrossRefGoogle Scholar
  136. Perry DA (1994) Forest ecosystems. The John Hopkins University Press, BaltimoreGoogle Scholar
  137. Peterson DW, Peterson DL (2001) Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology 82:3330–3345CrossRefGoogle Scholar
  138. Peterson DW, Reich PB (2001) Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecol Appl 11:914–927CrossRefGoogle Scholar
  139. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159CrossRefGoogle Scholar
  140. Potter C, Klooster S, Huete A, Genovese V (2007) Terrestrial carbon sinks for the United States predicted from MODIS satellite data and ecosystem modeling. Earth Interact 11(13):11–21CrossRefGoogle Scholar
  141. Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008) Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Glob Change Biol 14:142–153Google Scholar
  142. Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–2077CrossRefGoogle Scholar
  143. Puhe J, Ulrich B (2001) Implications of the deposition of acid and nitrogen. In: Puhe J, Ulrich B (eds) Global climate change and human impacts on forest ecosystems. Springer, Berlin, Pages 592CrossRefGoogle Scholar
  144. Pyne SJ (1982) Fire in America: a cultural history of wildland and rural fire. Princeton University Press, PrincetonGoogle Scholar
  145. Reich PB, Abrams MD, Ellsworth DS, Kruger EL, Tabone TJ (1990) Fire affects ecophysiology and community dynamics of central Wisconsin oak forest regeneration. Ecology 71:2179–2190CrossRefGoogle Scholar
  146. Reich P, Frelich L (2002) Temperate deciduous forests. In: Mooney H, Canadell J (eds) Encyclopedia of global environmental change, vol 2, The earth system: biological and ecological dimensions of global environmental change. Wiley, Chichester, pp 565–569Google Scholar
  147. Ren GY (2007) Changes in forest cover in china during the Holocene. Veg Hist Archaeobot 16(2–3):119–126. doi:10.1007/s00334-006-0075-5Google Scholar
  148. Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, Munger JW, Moors E, Piao SL, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A (2010) Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos Trans R Soc B 365(1555):3227–3246. doi:10.1098/rstb.2010.0102CrossRefGoogle Scholar
  149. Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Change Biol 12:1174–1188CrossRefGoogle Scholar
  150. Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–331PubMedCrossRefGoogle Scholar
  151. Richardson DM, Rundel PW, Jackson ST, Teskey RO, Aronson J, Bytnerowicz A, Wingfield MJ, Proches S (2007) Human impacts in pine forests: past, present, and future. Annu Rev Ecol Evol Syst 38:275–297CrossRefGoogle Scholar
  152. Rolland C, Lemperiere G (2004) Effects of climate on radial growth of Norway spruce and interactions with attacks by the bark beetle Dendroctonus micans (Kug., Coleoptera: Scolytidae): a dendroecological study in the French Massif Central. Forest Ecol Manag 201:89–104CrossRefGoogle Scholar
  153. Ruark GA, Bockheim JG (1988) Biomass, Net primary production, and nutrient distribution for an Age sequence of populus-tremuloides ecosystems. Can J Forest Res 18:435–443CrossRefGoogle Scholar
  154. Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu JC, Lambin E (2005) Forest transitions: towards a global understanding of land use change. Glob Environ Chang 15(1):23–31. doi:10.1016/j.gloenvcha.2004.11.001CrossRefGoogle Scholar
  155. Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262CrossRefGoogle Scholar
  156. Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996) Foliage, fine-root, woody-tissue and stand respiration in pinus radiata in relation to nitrogen status. Tree Physiol 16:333–343PubMedGoogle Scholar
  157. Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li SG, Nakai Y, Takagi K, Tani M, Wang HM (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agric Forest Meteorol 148:700–713CrossRefGoogle Scholar
  158. Savage K, Davidson EA, Richardson AD, Hollinger DY (2009) Three scales of temporal resolution from automated soil respiration measurements. Agric Forest Meteorol 149:2012–2021CrossRefGoogle Scholar
  159. Schleip C, Rutishauser T, Luterbacher J, Menzel A (2008) Time series modeling and central European temperature impact assessment of phenological records over the last 250 years. J Geophys Res Biogeosci 113:G04026CrossRefGoogle Scholar
  160. Schwalm CR, Williams CA, Schaefer K, Anderson R, Arain MA, Baker I, Barr A, Black TA, Chen GS, Chen JM, Ciais P, Davis KJ, Desai A, Dietze M, Dragoni D, Fischer ML, Flanagan LB, Grant R, Gu LH, Hollinger D, Izaurralde RC, Kucharik C, Lafleur P, Law BE, Li LH, Li ZP, Liu SG, Lokupitiya E, Luo YQ, Ma SY, Margolis H, Matamala R, McCaughey H, Monson RK, Oechel WC, Peng CH, Poulter B, Price DT, Riciutto DM, Riley W, Sahoo AK, Sprintsin M, Sun JF, Tian HQ, Tonitto C, Verbeeck H, Verma SB (2010) A model-data intercomparison of CO2 exchange across North America: results from the North American carbon program site synthesis. J Geophys Res Biogeosci 115. doi:G00h05.10.1029/2009jg001229Google Scholar
  161. Sharma CM, Baduni NP, Gairola S, Ghildiyal SK, Suyal S (2010) Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. Forest Ecol Manag 260(12):2170–2179. doi:10.1016/j.foreco.2010.09.014CrossRefGoogle Scholar
  162. Smith W, Miles P, Perry C, Pugh S (2009) Forest resources of the United States, 2007. US Department of Agriculture, Forest Service, Washington, DCGoogle Scholar
  163. Smithwick EAH, Harmon ME, Remillard SM, Acker SA, Franklin JF (2002) Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecol Appl 12:1303–1317CrossRefGoogle Scholar
  164. Tans P, Keeling R (2011) Trends in atmospheric carbon dioxide, Mauna Loa, Hawaii. NOAA Earth System Research Laboratory. Available at http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 15 Apr 2011
  165. Tinker DB, Knight DH (2000) Coarse woody debris following fire and logging in Wyoming lodgepole pine forests. Ecosystems 3:472–483CrossRefGoogle Scholar
  166. Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411CrossRefGoogle Scholar
  167. Tschaplinski TJ, Stewart DB, Hanson PJ, Norby RJ (1995) Interactions between drought and elevated CO2 on growth and gas-exchange of seedlings of 3 deciduous tree species. New Phytol 129:63–71CrossRefGoogle Scholar
  168. Uriate M, Papaik M (2007) Hurricane impacts on dynamics, structure and carbon sequestration potential of forest ecosystems in Southern New England, USA. Tellus A 59:519–528CrossRefGoogle Scholar
  169. Vadeboncoeur M, Hamburg S, Richardson A, Bailey A (2006) Examining climate change at the ecosystem level: a 50-year record from the Hubbard Brook Experimental Forest. Hubbard Brook Ecosystem StudyGoogle Scholar
  170. Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Guomundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865PubMedCrossRefGoogle Scholar
  171. Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an eco­system level. In: Box JE (ed) Root demographics and their efficiencies in sustainable agriculture, grasslands and forest ecosystems. Springer, Dordrecht, pp 687–720CrossRefGoogle Scholar
  172. Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177CrossRefGoogle Scholar
  173. Webb SL, Scanga SE (2001) Windstorm disturbance without patch dynamics: twelve years of change in a Minnesota forest. Ecology 82:893–897CrossRefGoogle Scholar
  174. Wickham JD, Riitters KH, Wade TG, Homer C (2008) Temporal change in fragmentation of continental US forests. Landscape Ecol 23:891–898Google Scholar
  175. Williams DW, Liebhold AM (1995) Herbivorous insects and global change: potential changes in the spatial distribution of forest defoliator outbreaks. J Biogeogr 22:665–671CrossRefGoogle Scholar
  176. Wittig VE, Bernacchi CJ, Zhu XG, Calfapietra C, Ceulemans R, Deangelis P, Gielen B, Miglietta F, Morgan PB, Long SP (2005) Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Glob Change Biol 11:644–656CrossRefGoogle Scholar
  177. Wofsy SC, Goulden ML, Munger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA (1993) Net exchange of CO2 in a Midlatitude forest. Science 260:1314–1317PubMedCrossRefGoogle Scholar
  178. Woodbury PB, Heath LS, Smith JE (2006) Land use change effects on forest carbon cycling throughout the southern United States. J Environ Qual 35:1348–1363PubMedCrossRefGoogle Scholar
  179. Woodbury PB, Smith JE, Heath LS (2007) Carbon sequestration in the US forest sector from 1990 to 2010. Forest Ecol Manag 241:14–27CrossRefGoogle Scholar
  180. Worrall JJ, Lee TD, Harrington TC (2005) Forest dynamics and agents that initiate and expand canopy gaps in Picea-Abies forests of Crawford Notch, New Hampshire, USA. J Ecol 93:178–190CrossRefGoogle Scholar
  181. Xiao JF, Zhuang QL, Law BE, Baldocchi DD, Chen JQ, Richardson AD, Melillo JM, Davis KJ, Hollinger DY, Wharton S, Oren R, Noormets A, Fischer ML, Verma SB, Cook DR, Sun G, McNulty S, Wofsy SC, Bolstad PV, Burns SP, Curtis PS, Drake BG, Falk M, Foster DR, Gu LH, Hadley JL, Katulk GG, Litvak M, Ma SY, Martinz TA, Matamala R, Meyers TP, Monson RK, Munger JW, Oechel WC, Paw UKT, Schmid HP, Scott RL, Starr G, Suyker AE, Torn MS (2011) Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agric Forest Meteorol 151(1):60–69CrossRefGoogle Scholar
  182. Yuan FM, Arain MA, Barr AG, Black TA, Bourque CPA, Coursolle C, Margolis HA, McCaughey JH, Wofsy SC (2008) Modeling analysis of primary controls on net ecosystem productivity of seven boreal and temperate coniferous forests across a continental transect. Glob Change Biol 14:1765–1784CrossRefGoogle Scholar
  183. Zak DR, Holmes WE, Pregitzer KS (2007) Atmospheric CO2 and O-3 alter the flow of N-15 in developing forest ecosystems. Ecology 88:2630–2639PubMedCrossRefGoogle Scholar
  184. Zhang QZ, Wang CK (2010) Carbon density and distribution of six Chinese temperate forests. Sci China Life Sci 53(7):831–840PubMedCrossRefGoogle Scholar
  185. Zhang C, Tian HQ, Chappelka AH, Ren W, Chen H, Pan SF, Liu ML, Styers DM, Chen GS, Wang YH (2007) Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains National Park. Environ Pollut 149:336–347PubMedCrossRefGoogle Scholar
  186. Zhu BA, Wang XP, Fang JY, Piao SL, Shen HH, Zhao SQ, Peng CH (2010) Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J Plant Res 123(4):439–452. doi:10.1007/s10265-009-0301-1PubMedCrossRefGoogle Scholar
  187. Zhu JJ, Yan QL, Fan AN, Yang K, Hu ZB (2009) The role of environmental, root, and microbial biomass characteristics in soil respiration in temperate secondary forests of Northeast China. Trees-Struct Funct 23:189–196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Yale School of Forestry and Environmental StudiesNew HavenUSA
  2. 2.Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations