Skip to main content

Carbon Dynamics of Tropical Forests

  • Chapter
  • First Online:
Managing Forest Carbon in a Changing Climate

Abstract

Tropical forests are a critical resource affecting world climate. They are very diverse, largely because of variations in regional climate and soil. For purposes of this analysis they have been divided in four broad forest types – ever-wet, semi-evergreen, dry deciduous, and montane. Existing literature on climate and tropical forests suggests that, compared to temperate and boreal forest biomes, tropical forests play a disproportionate role in contributing to emissions that both affect and mitigate climate. This chapter describes the geographical extent of tropical forests and their role in terrestrial carbon storage, uptake (through processes of photosynthesis), and loss (through plant respiration and microbial decomposition of dead biomass). A review is provided of current knowledge about the role of disturbance (natural and human caused) in affecting the carbon balance of tropical forests. The chapter concludes with an analysis of the threats to tropical forests and how they may influence climate change and elevated CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashton PMS (1992) Some measurements of the microclimate within a Sri Lankan tropical rain forest. Agric Forest Meteorol 59:217–235

    Article  Google Scholar 

  • Ashton PMS, Gunatilleke CVS, Gunatilleke IAUN (1995) Seedling survival and growth of four Shorea species in a Sri Lankan rainforest. J Trop Ecol 11:263–279

    Article  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Silva JNM, Martinez RV (2004) Increasing biomass in Amazonian forest plots. Philos Trans R Soc Lond B Biol Sci 359:353–365

    Article  PubMed  Google Scholar 

  • Baker TR, Coronado ENH, Phillips OL, Martin J, van der Heijden GMF, Garcia M, Espejo JS (2007) Low stocks of coarse woody debris in a southwest Amazonian forest. Oecologia 152:495–504

    Article  PubMed  Google Scholar 

  • Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and ­carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104:6550–6555

    Article  PubMed  CAS  Google Scholar 

  • Barlow J, Peres C (2004) Ecological responses to El Nino-induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. Philos Trans R Soc Lond B Biol Sci 359:367–380

    Article  PubMed  Google Scholar 

  • Beerling DJ, Mayle FE (2006) Contrasting effects of climate and CO2 on Amazonian ecosystems since the last glacial maximum. Glob Change Biol 12:1977–1984

    Article  Google Scholar 

  • Brokaw NVL, Walker LR (1991) Summary of the effects of Caribbean hurricanes on vegetation. Biotropica 23:442–447

    Article  Google Scholar 

  • Bullock SH, Mooney HA, Medina E (1995) Seasonally dry tropical forests. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bush MB, Silman MR, McMichael C, Saatchi S (2008) Fire, climate change and biodiversity in Amazonia: a late-Holocene perspective. Philos Trans R Soc B Biol Sci 363:1795–1802

    Article  CAS  Google Scholar 

  • Cattanio JH, Davidson EA, Nepstad DC, Verchot LV, Ackerman IL (2002) Unexpected results of a pilot throughfall exclusion experiment on soil emissions of CO2, CH4, N2O, and NO in eastern Amazonia. Biol Fert Soils 36:102–108

    Article  CAS  Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc Lond B Biol Sci 359:409–420

    Article  PubMed  Google Scholar 

  • Clark DB, Palmer MW, Clark DA (1999) Edaphic factors and the landscape scale distributions of tropical rain forest trees. Ecology 80:2662–2675

    Article  Google Scholar 

  • Clark D, Brown S, Kicklighter D, Chambers J, Thomlinson J, Ni J, Holland E (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384

    Article  Google Scholar 

  • Clark DB, Clark DA, Brown S, Oberbaur SF, Veldekamp E (2002) Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. Forest Ecol Manag 164:237–248

    Article  Google Scholar 

  • Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci USA 103:10316–10321

    Article  PubMed  CAS  Google Scholar 

  • Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR (2007) Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229–240

    Article  CAS  Google Scholar 

  • Cochrane M, Laurance W (2002) Fire as a large-scale edge effect in Amazonian forests. J Trop Ecol 18:311–325

    Article  Google Scholar 

  • Coley PD (1998) Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Climatic Change 39:455–472

    Article  Google Scholar 

  • Cowling SA, Shin Y (2006) Simulated ecosystem threshold responses to co-varying temperature, precipitation and atmospheric CO2 within a region of Amazonia. Glob Ecol Biogeogr 15:553–566

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  PubMed  CAS  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  PubMed  CAS  Google Scholar 

  • Eaton J, Lawrence D (2006) Woody stocks and fluxes during succession in a dry tropical forest. Forest Ecol Manag 232:46–55

    Article  Google Scholar 

  • Ediriweera S, Singhakumara BMP, Ashton MS (2008) Variation in canopy structure, light and soil nutrition across elevation of a Sri Lankan tropical rain forest. Forest Ecol Manag 256:1339–1349

    Article  Google Scholar 

  • Espeleta JF, Clark DA (2007) Multi-scale variation in fine-root biomass in a tropical rain forest: a seven-year study. Ecol Monogr 77:377–404

    Article  Google Scholar 

  • Feeley KJ, Wright SJ, Supardi MNN, Kassim AR, Davies SJ (2007) Decelerating growth in tropical forest trees. Ecol Lett 10:461–469

    Article  PubMed  Google Scholar 

  • Foody G, Palubinskas G, Lucas R, Curran P, Honzak M (1996) Identifying terrestrial carbon sinks: classification of successional stages in regenerating tropical forest from Landsat TM data. Remote Sens Environ 55:205–216

    Article  Google Scholar 

  • Frangi J, Lugo A (1985) Ecosystem dynamics of a sub-tropical floodplain forest. Ecol Monogr 55:351–369

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Grogan J, Ashton MS, Galvao J (2003) Big-leaf mahogany (Swietenia macrophylla) seedling survival and growth across a topographic gradient in southeast Para, Brazil. For Ecol Manag 186:311–326

    Article  Google Scholar 

  • Griscom HP, Ashton MS (2011) Restoration of dry tropical forests in Central America: a review of pattern and process. Forest Ecol Manag 261:1564–1579

    Article  Google Scholar 

  • Harmon ME, Franklin JF, Swanson PJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cine SP, Aumen NG, Sedell SR, Lienkaemper GW, Cromack K, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–156

    Article  Google Scholar 

  • Heinsohn RJ, Kabel RL (1999) Sources and control of air pollution. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Houghton R (1991a) Releases of carbon to the atmosphere from degradation of forests in tropical Asia. Can J Forest Res 21:132–142

    Article  CAS  Google Scholar 

  • Houghton R (1991b) Tropical deforestation and atmospheric carbon-dioxide. Climatic Change 19:99–118

    Article  CAS  Google Scholar 

  • Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Change Biol 11:945–958

    Article  Google Scholar 

  • Houghton RA, Lawrence KT, Hackler JL, Brown S (2001) The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob Change Biol 7:731–746

    Article  Google Scholar 

  • IPCC (2007) Climate change: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 104 p

    Article  Google Scholar 

  • Keller M, Palace M, Asner GP, Pereira R, Silva JN (2004) Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. Glob Change Biol 10:784–795

    Article  Google Scholar 

  • Korner C (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philos Trans R Soc Lond B Biol Sci 359:493–498

    Article  PubMed  Google Scholar 

  • LaDeau S, Clark J (2001) Rising CO2 levels and the fecundity of forest trees. Science 292:95–98

    Article  PubMed  CAS  Google Scholar 

  • Lal R, Kimble JM (2000) What do we know and what needs to be known and implemented for C sequestration in tropical ecosystems. Glob Climate Change Trop Ecosyst 417–431

    Google Scholar 

  • Laurance W, Oliveira A, Laurance S, Condit R, Nascimento H, Sanchez-Thorin A, Lovejoy T, Andrade A, D’Angelo S, Ribeiro J, Dick C (2004) Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature 428:171–175

    Article  PubMed  CAS  Google Scholar 

  • Leighton M, Wirawan N (1986) Catastrophic drought and fire in Borneo tropical rain forest associated with the 1982–1983 El Nino southern oscillation event. In: Prance GT (ed) Tropical rain forests and the world atmosphere. Westview Press, Boulder, pp 75–102

    Google Scholar 

  • Lewis SL, Malhi Y, Phillips OL (2004) Fingerprinting the impacts of global change on tropical forests. Philos Trans R Soc Lond B Biol Sci 359:437–462

    Article  PubMed  CAS  Google Scholar 

  • Lewis SL, Phillips OL, Baker TR (2006) Impacts of global atmospheric change on tropical forests. Trends Ecol Evol 21:173–174

    Article  PubMed  Google Scholar 

  • Lewis SL, Lopez-Gonzalez G, Sonke B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Djuikouo MN, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana JR, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KSH, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Woll H (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Lloyd J, Farquhar GD (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status.1. General principles and forest ecosystems. Funct Ecol 10:4–32

    Article  Google Scholar 

  • Lyon B (2004) The strength of El Nino and the spatial extent of tropical drought. Geophys Res Lett 31

    Google Scholar 

  • Malhi Y, Phillips OL (2004) Tropical forests and global atmospheric change: a synthesis. Philos Trans R Soc Lond B Biol Sci 359:549–555

    Article  PubMed  CAS  Google Scholar 

  • Malhi Y, Nobre A, Grace J, Kruijt B, Pereira M, Culf A, Scott S (1998) Carbon dioxide transfer over a central Amazonian rain forest. J Geophys Res Atmos 103:31593–31612

    Article  CAS  Google Scholar 

  • Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Di Fiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LMM, Monteagudo A, Neill DA, Vargas PN, Patino S, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Lezama AT, Martinez RV, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Change Biol 10:563–591

    Article  Google Scholar 

  • Nepstad DC, Decarvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Dasilva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Nepstad D, Lefebvre P, Da Silva UL, Tomasella J, Schlesinger P, Solorzano L, Moutinho P, Ray D, Benito JG (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Glob Change Biol 10:704–717

    Article  Google Scholar 

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–2269

    Article  PubMed  Google Scholar 

  • Nepstad DC, Stickler CM, Soares B, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc B Biol Sci 363:1737–1746

    Article  Google Scholar 

  • Nightingale JM, Phinn SR, Held AA (2004) Ecosystem process models at multiple scales for mapping tropical forest productivity. Prog Phys Geog 28:241–281

    Article  Google Scholar 

  • Notaro M, Vavrus S, Liu ZY (2007) Global vegetation and climate change due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J Climate 20:70–90

    Article  Google Scholar 

  • Paoli GD, Curran LM (2007) Soil nutrients limit fine litter production and tree growth in mature lowland forest of Southwestern Borneo. Ecosystems 10:503–518

    Article  CAS  Google Scholar 

  • Phillips OL, Baker TR, Arroyo L, Higuchi N, Killeen TJ, Laurance WF, Lewis SL, Lloyd J, Malhi Y, Monteagudo A, Neill DA, Vargas PN, Silva JNM, Terborgh J, Martinez RV, Alexiades M, Almeida S, Brown S, Chave J, Comiskey JA, Czimczik CI, Di Fiore A, Erwin T, Kuebler C, Laurance SG, Nascimento HEM, Olivier J, Palacios W, Patino S, Pitman NCA, Quesada CA, Salidas M, Lezama AT, Vinceti B (2004) Pattern and process in Amazon tree turnover, 1976–2001. Philos Trans R Soc Lond B Biol Sci 359:381–407

    Article  PubMed  CAS  Google Scholar 

  • Phillips OL, Lewis SL, Baker TR, Chao KJ, Higuchi N (2008) The changing Amazon forest. Philos Trans R Soc B Biol Sci 363:1819–1827

    Article  Google Scholar 

  • Potts M (2003) Drought in a Bornean everwet rain forest. J Ecol 91:467–474

    Article  Google Scholar 

  • Pregitzer KS, Zak DR, Curtis PS, Kubiske ME, Teeri JA, Vogel CS (1995) Atmospheric CO2, soil-nitrogen and turnover of fine roots. New Phytol 129:579–585

    Article  Google Scholar 

  • Ramankutty N, Gibbs HK, Achard F, Defries R, Foley JA, Houghton RA (2007) Challenges to estimating carbon emissions from tropical deforestation. Glob Change Biol 13:51–66

    Article  Google Scholar 

  • Reijnders L, Huijbregts MAJ (2008) Palm oil and the emission of carbon-based greenhouse gases. J Clean Prod 16:477–482

    Article  Google Scholar 

  • Ricklefs RE (2001) The economy of nature, 5th edn. W.H. Freeman and Co, New York

    Google Scholar 

  • Robinson D (2007) Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc R Soc B Biol Sci 274:2753–2759

    Article  CAS  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557

    Article  PubMed  CAS  Google Scholar 

  • Saleska SR, Didan K, Huete AR, da Rocha HR (2007) Amazon forests green-up during 2005 drought. Science 318:612

    Article  PubMed  CAS  Google Scholar 

  • Samanta A, Ganguly S, Myneni RB (2010) MODIS Enhanced Vegetation Index data do not show greening of Amazon forests during the 2005 drought. New Phytol 189:11–15

    Article  PubMed  Google Scholar 

  • Sampson RN, Apps M, Brown S, Cole CV, Downing J, Heath LS, Ojima DS, Smith TM, Solomon AM, Wisniewski J (1993) Workshop summary statement - terrestrial biospheric carbon fluxes - quantification of sinks and sources of CO2. Water Air Soil Pollut 70:3–15

    Article  Google Scholar 

  • Sayer EJ, Powers JS, Tanner EVJ (2007) Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoS One 2:e1299

    Article  PubMed  Google Scholar 

  • Schwendenmann L, Veldkamp E (2005) The role of dissolved organic carbon, dissolved organic nitrogen, and dissolved inorganic nitrogen in a tropical wet forest ecosystem. Ecosystems 8:339–351

    Article  CAS  Google Scholar 

  • Soepadmo E (1993) Tropical rain-forests as carbon sinks. Chemosphere 27:1025–1039

    Article  Google Scholar 

  • Sotta ED, Veldkamp E, Schwendenmann L, Guimaraes BR, Paixao RK, Ruivo M, Da Costa ACL, Meir P (2007) Effects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil. Glob Change Biol 13:2218–2229

    Article  Google Scholar 

  • Tsonis A, Elsner J, Hunt A, Jagger T (2005) Unfolding the relation between global temperature and ENSO. Geophys Res Lett 32

    Google Scholar 

  • USDA (2002) Natural Resources Conservation Service, Soil Survey Division, World soil resources

    Google Scholar 

  • USDA (2005) Natural Resources Conservation Science, Soil Survey Division, World soil resources

    Google Scholar 

  • Vandermeer J (1996) Disturbance and neutral competition theory in rain forest dynamics. Ecol Model 85:99–111

    Article  Google Scholar 

  • Vandermeer JH, Perfecto I (2005) Breakfast of biodiversity: the political ecology of rain forest destruction, 2nd edn. Food First Books, Oakland

    Google Scholar 

  • Vandermeer J, de la Cerda IG, Boucher D (1997) Contrasting growth rate patterns in eighteen tree species from a post-hurricane forest in Nicaragua. Biotropica 29:151–161

    Article  Google Scholar 

  • Vandermeer J, Brenner A, de la Cerda JI (1998) Growth rates of tree height Six years after hurricane damage at four localities in Eastern Nicaragua. Biotropica 30:502–509

    Article  Google Scholar 

  • Veldkamp E, Becker A, Schwendenmann L, Clark D, Schulte-Bisping H (2003) Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest. Glob Change Biol 9:1171–1184

    Article  Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Watson RT, Noble I, Bolin B (2000) IPCC: special report: land use, change, and forestry

    Google Scholar 

  • Whigham DF, Olmsted EC, Cano ME, Harmon ME (1991) The impact of hurricane Gilbert on trees, litterfall, and woody debris in a dry tropical forest in northern Yucatan Peninsula. Biotropica 23:434–441

    Article  Google Scholar 

  • Whigham DF, Dickinson MB, Brokaw NVL (1999) Background canopy gap and catastrophic wind disturbance in tropical forest. In: Walker L (ed) Ecosystems and disturbed ground. Elsevier, The Hague, pp 223–252

    Google Scholar 

  • Whitmore TC (1989) Changes over twenty-one years in the Kolobangara rain forest. J Ecol 77:409–483

    Google Scholar 

  • Wilcke W, Hess T, Bengel C, Homeier J, Valarezo C, Zech W (2004) Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient stock. Forest Ecol Manag 205:139–147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Ashton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Meister, K., Ashton, M.S., Craven, D., Griscom, H. (2012). Carbon Dynamics of Tropical Forests. In: Ashton, M., Tyrrell, M., Spalding, D., Gentry, B. (eds) Managing Forest Carbon in a Changing Climate. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2232-3_4

Download citation

Publish with us

Policies and ethics