Improvement of Drought Resistance in Crops: From Conventional Breeding to Genomic Selection

  • Anna Maria Mastrangelo
  • Elisabetta Mazzucotelli
  • Davide Guerra
  • Pasquale De Vita
  • Luigi Cattivelli


Drought stress is the major factor limiting yield and yield stability of crops. To improve plant performances under drought conditions direct selection for yield over multiple locations has traditionally been employed. This approach is hampered by low heritability and high G × E interaction influenced by differences arising from soil heterogeneity and others environmental factors. The indirect selection using secondary traits has succeeded only in a few cases, due to problems with repeatability and lack of high-throughput phenotyping strategies. During last years, considerable efforts have been directed towards identifying physiological traits associated with yield and drought resistance. With the availability of whole genome sequences, physical maps, genetics and functional genomics tools for many crops, integrated approaches using molecular breeding and genetic engineering offer new opportunities for improving yield in drought prone conditions. The identification of the genetic bases of important physiological traits and the cloning of the genes sustaining yield in drought-prone environments will move the selection toward a “breeding by design” approach that will accumulate an increasing number of useful traits into elite genotypes that, in turn, will result in a reduction of the gap between yield potential and actual yield.


  1. Abalo G, Tongoona P, Derera J, Edema R (2009) A comparative analysis of conventional and marker-assisted selection methods in breeding maize streak virus resistance in maize. Crop Sci 49:509–520CrossRefGoogle Scholar
  2. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid regulated gene expression. Plant Cell 9:1859–1868PubMedCrossRefGoogle Scholar
  3. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. Plant Cell 15:63–78PubMedCrossRefGoogle Scholar
  4. Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755PubMedCrossRefGoogle Scholar
  5. Abeledo LG, Calderoni DF, Slafer GA (2002) Genetic improvement of barley yield potential and its physiological determinants in Argentina (1944–1998). Euphytica 130:325–334CrossRefGoogle Scholar
  6. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274PubMedCrossRefGoogle Scholar
  7. Alvaro F, Garcia del Moral LF, Royo C (2007) Usefulness of remote sensing for the assessment of growth traits in individual cereal plants grown in the field. Int J Remote Sens 28:2497–2512CrossRefGoogle Scholar
  8. Amani I, Fischer RA, Reynolds MP (1996) Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci 176:119–129CrossRefGoogle Scholar
  9. Anyia AO, Herzog H (2004) Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Eur J Agron 20:327–339CrossRefGoogle Scholar
  10. Aparicio N, Villegas D, Casadesus J, Araus JL, Royo C (2000) Spectral reflectance indices for assessing durum wheat biomass, green area, and yield under Mediterranean conditions. Agron J 92:83–91CrossRefGoogle Scholar
  11. Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150PubMedCrossRefGoogle Scholar
  12. Araus JL, Amaro T, Zuhair Y, Nachit MM (1997) Effect of leaf structure and water status on carbon isotope discrimination in field-grown durum wheat. Plant Cell Environ 20:1484–1494CrossRefGoogle Scholar
  13. Araus JL, Casadesus J, Bort J (2001a) Recent tools for the screening of physiological traits determining yield. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico DFGoogle Scholar
  14. Araus JL, Casadesús J, Asbati A, Nachit MM (2001b) Basis of the relationship between ash content in the flag leaf and carbon isotope discrimination in kernels of durum wheat. Photosynthetica 39:591–596CrossRefGoogle Scholar
  15. Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940PubMedCrossRefGoogle Scholar
  16. Araus JL, Villegas D, Aparicio N, Garcìa del Moral LF, El Hani Rharrabti Y, Ferrio JP, Royo C (2003) Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Sci 43:170–180CrossRefGoogle Scholar
  17. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  18. Ashraf M (2009) Inducing drought tolerance in plants: recent advances. Biotechnol Adv. doi:10.1016/j.biotechadv.2009.11.005
  19. Atlin GN (2004) Improving drought tolerance by selecting for yield. In: Fischer KS, Lafitte R, Fukai S, Atlin G, Hardy B (eds) Breeding rice for drought-prone environments. International Rice Research Institute, Los BanosGoogle Scholar
  20. Atlin GN, Frey KJ (1990) Selecting oat lines for yield in low-productivity environments. Crop Sci 30:556–561CrossRefGoogle Scholar
  21. Babar MA, van Ginkel M, Klatt A, Prasad B, Reynolds MP (2006) The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica 150:155–172CrossRefGoogle Scholar
  22. Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427CrossRefGoogle Scholar
  23. Baker NR, Oxborough K (Chlorophyll fluorescence as a probe of photosynthetic productivity) Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, DordrechtGoogle Scholar
  24. Baker NR, Rosenquist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621PubMedCrossRefGoogle Scholar
  25. Bänziger M, Betran FJ, Lafitte HR (1997) Efficiency of high nitrogen and water stress on biomass accumulation, nitrogen uptake, and seed yield of maize. Field Crop Res 19:297–311Google Scholar
  26. Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric Water Manage 80:212–224CrossRefGoogle Scholar
  27. Barbazuk WB, Emrich S, Schnable PS (2007) SNP mining from maize 454 EST sequences. Cold Spring Harbor Protocols; 2007. doi:10.1101/pdb.prot4786
  28. Barbour MM (2007) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94CrossRefGoogle Scholar
  29. Beebe SE, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592CrossRefGoogle Scholar
  30. Bernier J, Kumar A, Venuprasad R, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–518CrossRefGoogle Scholar
  31. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424PubMedCrossRefGoogle Scholar
  32. Blum A (1988) Plant breeding for stress environments. CRC Press, Boca RatonGoogle Scholar
  33. Blum A (1996) Constitutive traits affecting plant performance under stress. In: Bänziger M, Mickelson HR, Peña-Valdivia CB, Edmeades GO (eds) Developing drought- and low nitrogen-tolerant maize. CIMMYT, Mexico DF, pp 131–135Google Scholar
  34. Blum A (2005) Drought resistance, water use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168CrossRefGoogle Scholar
  35. Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112:119–123CrossRefGoogle Scholar
  36. Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188PubMedCrossRefGoogle Scholar
  37. Bolaños J, Edmeades GO (1993) Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass, and radiation utilization. Field Crop Res 31:233–252CrossRefGoogle Scholar
  38. Bonafede M, Kong L, Tranquilli G, Ohm H, Dubcovsky J (2007) Reduction of a Triticum monococcum chromosome segment carrying the softness genes pina and pinb translocated to bread wheat. Crop Sci 47:821–826CrossRefGoogle Scholar
  39. Borrelli GM, De Vita P, Mastrangelo AM, Cattivelli L (2009) Integrated views in plant breeding: modern approaches for an old topic. In: Sadras VO, Calderini DF (eds) Applied crop physiology: boundaries with genetic improvement and agronomy. Part 3 – Crop physiology, genetic improvement, and agronomy. Elsevier, AmsterdamGoogle Scholar
  40. Boyle MG, Boyer JS, Morgan PW (1991) Stem infusion of liquid culture medium prevents reproductive failure of maize at low water potential. Crop Sci 31:1246–1252CrossRefGoogle Scholar
  41. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177PubMedCrossRefGoogle Scholar
  42. Calderini DF, Slafer GA (1998) Changes in yield and yield stability in wheat during the 20th century. Field Crop Res 57:335–347CrossRefGoogle Scholar
  43. Calderini DF, Dreccer MF, Slafer GA (1995) Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest. Trends Plant Breed 114:108–112CrossRefGoogle Scholar
  44. Campbell MA, Fitzgerald HA, Ronald PC (2002) Engineering pathogen resistance in crop plants. Transgenic Res 11:599–613PubMedCrossRefGoogle Scholar
  45. Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crop Res 90:19–34CrossRefGoogle Scholar
  46. Cattivelli L, Delogu G, Terzi V, Stanca AM (1994) Progress in barley breeding. In: Slafer GA (ed) Genetic improvement of field crops. Marcel Dekker, New York, pp 95–181Google Scholar
  47. Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665CrossRefGoogle Scholar
  48. Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14CrossRefGoogle Scholar
  49. Ceccarelli S (1994) Specific adaptation and breeding for marginal conditions. Euphytica 77:205–219CrossRefGoogle Scholar
  50. Chaerle K, Leinonen L, Jones HG, Van Der Straeten D (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784PubMedCrossRefGoogle Scholar
  51. Chimenti CA, Marcantonio M, Hall AJ (2006) Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crop Res 95:305–315CrossRefGoogle Scholar
  52. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572CrossRefGoogle Scholar
  53. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460PubMedCrossRefGoogle Scholar
  54. Courtois B, Shen L, Petalcorin W, Sarandang S, Mauleon R, Li Z (2003) Location QTLs controlling constitutive root traits in the rice population IAC 165  ×  Co39. Euphytica 134:335–345CrossRefGoogle Scholar
  55. Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128CrossRefGoogle Scholar
  56. De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106PubMedCrossRefGoogle Scholar
  57. De Vita P, Mastrangelo AM, Matteu L, Mazzucotelli E, Virzì N, Palumbo M, Lo Storto M, Rizza F, Cattivelli L (2010) Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crop Res 119:68–77CrossRefGoogle Scholar
  58. Delseny M, Han B, Hsing YI (2010) High throughput DNA sequencing: the new sequencing revolution. Plant Sci 179:407–422PubMedCrossRefGoogle Scholar
  59. Diab AA, Teulat B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109:1417–1425PubMedCrossRefGoogle Scholar
  60. Dilbirligi M, Erayman M, Campbell BT, Randhawa HS, Baenziger PS (2006) High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics 88:74–87PubMedCrossRefGoogle Scholar
  61. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37PubMedCrossRefGoogle Scholar
  62. Dowkiw A, Wright GC, Cruickshank A, Redden R (2000) Indirect selection for drought resistance: a pilot study. ACIAR Food Legume Newslett 31:4–10Google Scholar
  63. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763PubMedCrossRefGoogle Scholar
  64. Edmeades GO, Bolãnos J, Lafitte HR (1992) Progress in breeding for drought tolerance in maize. In: Wilkinson D (ed) Proceedings of the 47th annual corn and sorghum industry research conference, Chicago. American Seed Trade Association, Chicago, pp 93–111Google Scholar
  65. Edmeades GO, Bänziger M, Beck D, Bolaños J, Ortega A (1997) Development and per se performance of CIMMYT maize populations as drought-tolerant sources. In: Edmeades GO et al (eds) Developing drought and low-N tolerant maize. CIMMYT, Mexico DF, pp 254–262Google Scholar
  66. Edmeades GO, Bolanos J, Chapman SC, Lafitte HR, Bänziger M (1999) Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield and harvest index. Crop Sci 39:1306–1315CrossRefGoogle Scholar
  67. Edmeades GO, McMaster GS, White JW, Campos H (2004) Genomics and physiologist: bridging the gap between genes and crop response. Field Crop Res 90:5–18CrossRefGoogle Scholar
  68. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedCrossRefGoogle Scholar
  69. Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552CrossRefGoogle Scholar
  70. Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Aust J Agric Res 14:742–754CrossRefGoogle Scholar
  71. Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield response. Aust J Agric Res 29:897–912CrossRefGoogle Scholar
  72. Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Valè G (2005) Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult 82:317–342CrossRefGoogle Scholar
  73. Frederick JR, Woolley JT, Hesketh JD, Peters DB (1990) Seed yield and agronomic traits of old and modern soybean cultivars under irrigation and soil water-deficit. Field Crop Res 27:71–82CrossRefGoogle Scholar
  74. Frederick JR, Woolley JT, Hesketh JD, Peters DB (1991) Water deficit development in old and new soybean cultivars. Agron J 82:76–81CrossRefGoogle Scholar
  75. Fresneau C, Ghashghaie J, Cornic G (2007) Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): role of leaf internal CO2. J Exp Bot 58:2983–2992PubMedCrossRefGoogle Scholar
  76. Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217PubMedCrossRefGoogle Scholar
  77. Garg A, Kim J, Owens T, Ranwala A, Choi Y, Kochian L, Wu R (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903PubMedCrossRefGoogle Scholar
  78. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H  +  −pump. Proc Natl Acad Sci USA 98:11444–11449PubMedCrossRefGoogle Scholar
  79. Ghashghaie J, Duranceau M, Badeck F-W, Adeline MT, Cornic G, Deléens E (2001) Delta-13 C of CO2 respired in the dark in relation to delta-13 C of leaf metabolites: comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant Cell Environ 24:505–515CrossRefGoogle Scholar
  80. González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926PubMedCrossRefGoogle Scholar
  81. González-Martínez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101:19–26PubMedCrossRefGoogle Scholar
  82. Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype Map of maize. Science 326:1115–1119PubMedCrossRefGoogle Scholar
  83. Gubis J, Vaňková R, Červená V, Dragúňová M, Hudcovicová M, Lichtnerová H, Dokupil T, Jureková Z (2007) Transformed tobacco plants with increased tolerance to drought. S Afr J Bot 73:505–511CrossRefGoogle Scholar
  84. Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397PubMedGoogle Scholar
  85. Hall AJ, Vilella F, Trapani N, Chimenti C (1982) The effect of water stress and genotype on the dynamics of pollen shedding and silking in maize. Field Crop Res 5:349–363CrossRefGoogle Scholar
  86. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12CrossRefGoogle Scholar
  87. Horie T, Matsuura S, Takai T, Kuwasaki K, Ohsumi A, Shiraiwa T (2006) Genotypic difference in canopy diffusive conductance measured by a new remote-sensing method and its association with the difference in rice yield potential. Plant Cell Environ 29:653–660PubMedCrossRefGoogle Scholar
  88. Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136:303–310PubMedCrossRefGoogle Scholar
  89. Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626PubMedCrossRefGoogle Scholar
  90. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992PubMedCrossRefGoogle Scholar
  91. Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076PubMedCrossRefGoogle Scholar
  92. Idso SB, Reginato R, Reicosky D, Hatfield J (1981) Determining soil induced plant water potential depression in alfalfa by means of infrared thermometer. Agron J 73:826–830CrossRefGoogle Scholar
  93. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbolo P et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861PubMedCrossRefGoogle Scholar
  94. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional Analysis of Rice DREB1/CBF-Type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:1–13Google Scholar
  95. Jacoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111CrossRefGoogle Scholar
  96. Jannoo N, Grivet L, Dookun A, D’Hont A, Glaszmann JC (1999) Linkage disequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060CrossRefGoogle Scholar
  97. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi YD, Kim M, Reuzeau C, Kim JK (2010) Root specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. doi:10.1104/pp. 110.154773
  98. Jiang GH, He YQ, Xu CG, Li XH, Zhang Q (2004) The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet 108:688–698PubMedCrossRefGoogle Scholar
  99. Johnson WC, Jackson LE, Ochoa O, van Wijk R, Peleman J, St Clair DA, Michelmore RW (2000) A shallow-rooted crop and its wild progenitor differ at loci determining root architecture and deep soil water extraction. Theor Appl Genet 101:1066–1073CrossRefGoogle Scholar
  100. Juenger TE, Mckay JK, Hausmann N, Keurentjes JJB, Sen S, Stowe KA, Dawson TE, Simms EL, Richards JH (2005) Identification and characterization of QTL underlying whole plant physiology in Arabidopsis thaliana: d13C, stomatal conductance and transpiration efficiency. Plant Cell Environ 28:697–708CrossRefGoogle Scholar
  101. Kane NC, Rieseberg LH (2007) Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 175:1823–1834PubMedCrossRefGoogle Scholar
  102. Karamanos AJ, Papatheohari AY (1999) Assessment of drought resistance of crop genotypes by means of the Water Potential Index. Crop Sci 39:1792–1797CrossRefGoogle Scholar
  103. Kerstiens G, Schreiber L, Lendzian KJ (2006) Quantification of cuticular permeability in genetically modified plants. J Exp Bot 57:2547–2552PubMedCrossRefGoogle Scholar
  104. Khlestkina EK, Salina EA (2006) SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Russ J Genet 42:585–594CrossRefGoogle Scholar
  105. Kim M-J, Lim G-H, Kim E-S, Ko C-B, Yang K-Y, Jeong J-A, Lee M-C, Kim CS (2007) Abiotic and biotic stress tolerance in Arabidopsis overexpressing the Multiprotein bridging factors 1a (MBF1a) transcriptional coactivator gene. Biochem Biophys Res Commun 354:440–446PubMedCrossRefGoogle Scholar
  106. Korzun V (2002) Use of molecular markers in cereal breeding. Cell Mol Biol Lett 7:811–820PubMedGoogle Scholar
  107. Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446PubMedCrossRefGoogle Scholar
  108. Kraft T, Hansen M, Nilsson NO (2000) Linkage disequilibrium and fingerprinting in sugar beet. Theor Appl Genet 101:323–326CrossRefGoogle Scholar
  109. Lafitte HR, Courtois B (2002) Interpreting cultivar x environment interactions for yield in upland rice assigning value to drought-adaptive traits. Crop Sci 42:1409–1420CrossRefGoogle Scholar
  110. Lafitte R, Blum A, Atlin G (2003) Using secondary traits to help identify drought-tolerant genotypes. In: Fischer KS, Lafitte R, Fukai S, Atlin G (eds) Breeding rice for drought-prone environments. International Rice Research Institute, Los BanosGoogle Scholar
  111. Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705PubMedCrossRefGoogle Scholar
  112. Levitt J (1972) Responses of plants to environmental stresses. Academic, New YorkGoogle Scholar
  113. Li XP, Tain AG, Luo GZ, Gong ZZ, Zhang JS, Chan SY (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110:1355–1362PubMedCrossRefGoogle Scholar
  114. Lin CS, Binn MR (1988) A superiority measure of cultivar performance for cultivar x location data. Can J Plant Sci 68:193–198CrossRefGoogle Scholar
  115. Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:107–118PubMedCrossRefGoogle Scholar
  116. Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–152CrossRefGoogle Scholar
  117. Maccaferri M, Sanguineti MC, Corneti S, Araus Ortega JL, Ben Salern M, Bort J, DeAmbrogio E, del Moral LG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit MM, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511PubMedCrossRefGoogle Scholar
  118. Maccaferri M, Sanguineti MC, Giuliani S, Tuberosa R (2009) Genomics of tolerance to abiotic stress in the Triticeae. In: Feuillet C, Muehlbauer G (eds) Plant genetics and genomics: crops and models, vol 7, Genetics and genomics of the Triticeae. Springer, Dordrecht, pp 481–558Google Scholar
  119. Martin B, Nienhuis J, King G, Schaeffer A (1989) Restriction fragment length polymorphism associated with water use efficiency in tomato. Science 243:1725–1728PubMedCrossRefGoogle Scholar
  120. Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870PubMedCrossRefGoogle Scholar
  121. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedGoogle Scholar
  122. Miralles DJ, Richards R, Slafer GA (2000) Duration of the stem elongation period influences the number of fertile florets in wheat and barley. Aust J Plant Physiol 27:931–940Google Scholar
  123. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19PubMedCrossRefGoogle Scholar
  124. Monneveux P, Sánchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations. Evidence of progress. Crop Sci 46:180–191CrossRefGoogle Scholar
  125. Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219PubMedCrossRefGoogle Scholar
  126. Motzo R, Giunta F, Deidda M (2001) Factors affecting the genotype x environment interaction in spring triticale grown in a Mediterranean environment. Euphytica 121:317–324CrossRefGoogle Scholar
  127. Nedbal L, Whitmarsh J (2004) Chlorophyll fluorescence imaging of leaves and fruits. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, DordrechtGoogle Scholar
  128. Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455PubMedCrossRefGoogle Scholar
  129. Nguyen TT, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena AC, Pathan MS, Nguyen HT (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Genet Genomics 272:35–46PubMedCrossRefGoogle Scholar
  130. Nigam SN, Chandra S, Sridevi KR, Bhukta M, Reddy AGS, Rachaputi NR, Wright GC, Reddy PV, Deshmukh MP, Mathur RK, Basu MS, Vasundhara S, Varman PV, Nagda AK (2005) Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut. Ann Appl Biol 146:433–439CrossRefGoogle Scholar
  131. Ober ES, Clark CJA, Le Bloa M, Royal A, Jaggard KW, Pidgeon JD (2004) Assessing the genetic resources to improve drought tolerance in sugar beet: agronomic traits of diverse genotypes under droughted and irrigated conditions. Field Crop Res 90:213–234CrossRefGoogle Scholar
  132. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim Y-K, Kim NY-K, Nahm BH, Kim J-K (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351PubMedCrossRefGoogle Scholar
  133. Olsen AN, Ernst HA, Leggio LL, Skriver K (2006) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87CrossRefGoogle Scholar
  134. Oxborough K (2004) Using chlorophyll a fluorescence imaging to monitor photosynthetic performance. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 409–428Google Scholar
  135. Pantuwan G, Fukai S, Cooper M, Rajatasereekul S, O’Toole JC (2002) Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands. Part1. Grain yield and yield components. Field Crop Res 73:153–168CrossRefGoogle Scholar
  136. Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+−pyrophosphatase (H+−PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835PubMedCrossRefGoogle Scholar
  137. Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and future directions. Ann Appl Biol 147:211–226CrossRefGoogle Scholar
  138. Passioura JB (1977) Grain yield, harvest index and water use of wheat. J Aust Inst Agric Sci 43:117–120Google Scholar
  139. Passioura JB (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117PubMedCrossRefGoogle Scholar
  140. Peleman JD, Van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334PubMedCrossRefGoogle Scholar
  141. Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500PubMedCrossRefGoogle Scholar
  142. Pidgeon JD, Ober ES, Qi A, Clark CJA, Royal A, Jaggard KW (2006) Using multi-environment sugar beet variety trails to screen for drought tolerance. Field Crop Res 95:268–279CrossRefGoogle Scholar
  143. Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20:481–486PubMedCrossRefGoogle Scholar
  144. Podlich DW, Winkler CR, Cooper M (2004) Mapping as You Go: an effective approach for marker-assisted selection of complex traits. Crop Science 44:1560–1571CrossRefGoogle Scholar
  145. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycinebetaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486PubMedCrossRefGoogle Scholar
  146. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring  ×  SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880PubMedCrossRefGoogle Scholar
  147. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  148. Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon-isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci 42:739–745CrossRefGoogle Scholar
  149. Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining QTL analysis and an ecophysiological model to analyse the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664–675PubMedCrossRefGoogle Scholar
  150. Reymond M, Muller B, Tardieu F (2004) Dealing with the genotype x environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. J Exp Bot 55:2461–2472PubMedCrossRefGoogle Scholar
  151. Reynolds MP, Mujeeb-Kazi A, Sawkins M (2005) Prospects for utilizing plant-adaptive mechanisms to improve wheat and other crops in drought and salinity-prone environments. Ann Appl Biol 146:239–259CrossRefGoogle Scholar
  152. Rharrabti Y, Villegas D, Garcia del Moral LF, Aparicio N, Elhani S, Royo C (2001) Environmental and genetic determination of protein content and grain yield in durum wheat under Mediterranean conditions. Plant Breed 120:381–388CrossRefGoogle Scholar
  153. Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360PubMedCrossRefGoogle Scholar
  154. Ribaut JM, Hoisington D, Deutsch JA, Jiang C, Gonzáles-de-León D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914CrossRefGoogle Scholar
  155. Richards RA (2006) Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric Water Manage 80:197–211CrossRefGoogle Scholar
  156. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636PubMedCrossRefGoogle Scholar
  157. Rizza F, Badeck FW, Cattivelli L, Li Destri O, Di Fonzo N, Stanca AM (2004) Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Sci 44:2127–2137CrossRefGoogle Scholar
  158. Robbins MD, Staub JE (2009) Comparative analysis of marker-assisted and phenotypic selection for yield components in cucumber. Theor Appl Genet 119:621–634PubMedCrossRefGoogle Scholar
  159. Robin S, Pathan MS, Courtois B, Lafitte R, Carandang S, Lanceras S, Amante M, Nguyen HT, Li Z (2003) Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor Appl Genet 107:1288–1296PubMedCrossRefGoogle Scholar
  160. Röder MS, Huang X-Q, Ganal MW (2004) Wheat microsatellites: potential and implications. In: Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement, vol 55, Biotechnology in agriculture and forestry. Springer, Berlin/Heidelberg, pp 255–266CrossRefGoogle Scholar
  161. Ronde JAD, Cress WA, Krugerd GHJ, Strasserd RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224PubMedCrossRefGoogle Scholar
  162. Rosielle AA, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci 21:943–946CrossRefGoogle Scholar
  163. Royo C, Villegas D, Garcia del Moral LF, Elhani S, Aparicio N, Rharrabti Y, Araus JL (2002) Comparative performance of carbon isotope discrimination and canopy temperature depression as predictors of genotypes differences in durum wheat yield in Spain. Aust J Agric Res 53:561–569CrossRefGoogle Scholar
  164. Royo C, Aparicio N, Villegas D, Casadesus J, Monneveux P, Araus JL (2003) Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions. Int J Remote Sens 24:4403–4419CrossRefGoogle Scholar
  165. Royo C, Aparicio N, Blanco R, Villegas D (2004) Leaf and green area development of durum wheat genotypes grown under Mediterranean conditions. Eur J Agron 20:419–430CrossRefGoogle Scholar
  166. Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661PubMedCrossRefGoogle Scholar
  167. Sahrawat AK, Becker D, Lütticke S, Lörtz H (2003) Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165:1147–1168CrossRefGoogle Scholar
  168. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+−dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327PubMedCrossRefGoogle Scholar
  169. Saini HS, Westgate ME (2000) Reproductive development in grain crops during drought. Adv Agron 68:59–96CrossRefGoogle Scholar
  170. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozachi K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309PubMedCrossRefGoogle Scholar
  171. Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci 14:488–496PubMedCrossRefGoogle Scholar
  172. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304PubMedCrossRefGoogle Scholar
  173. Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726PubMedCrossRefGoogle Scholar
  174. Saranga Y, Jiang C-X, Wright RJ, Yakir D, Paterson AH (2004) Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ 27:263–277CrossRefGoogle Scholar
  175. Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst 17:667–693CrossRefGoogle Scholar
  176. Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really increase crop yield under drought conditions? Plant Cell Environ 25:333–341PubMedCrossRefGoogle Scholar
  177. Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395CrossRefGoogle Scholar
  178. Shen YG, Du BX, Zhang WK, Zhang JS, Chen SY (2002) AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor Appl Genet 105:815–821PubMedCrossRefGoogle Scholar
  179. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930PubMedGoogle Scholar
  180. Simmonds NW (1991) Selection for local adaptation in a plant breeding programme. Theor Appl Genet 82:363–367CrossRefGoogle Scholar
  181. Slafer GA, Abeledo LG, Miralles DJ, Gonzalez FG, Whitechurch EM (2001) Photoperiod sensitivity during stem elongation as an avenue to raise potential yield in wheat. Euphytica 119:191–197CrossRefGoogle Scholar
  182. Slafer GA, Araus JL, Royo C, Del Moral LFG (2005) Promising ecophysiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70CrossRefGoogle Scholar
  183. Soika RE, Stolzy LH, Fischer RA (1981) Seasonal drought response of selected wheat cultivars. Agron J 73:838–845CrossRefGoogle Scholar
  184. Steele K (2009) Novel upland rice variety bred using marker-assisted selection and clientoriented breeding released in Jharkhand. Bangor University, IndiaGoogle Scholar
  185. Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221PubMedCrossRefGoogle Scholar
  186. Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crop Res 101:180–186CrossRefGoogle Scholar
  187. Syvänen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:S5–S10PubMedCrossRefGoogle Scholar
  188. Tambussi EA, Casadesus J, Munne-Bosch S, Araus JL (2002) Photoprotection in water stressed plants of durum wheat (Triticum turgidum L. var. durum): changes in chlorophyll fluorescence, spectral signature and photosynthetic pigments. Funct Plant Biol 29:35–44CrossRefGoogle Scholar
  189. Tambussi EA, Nogues S, Ferrio P, Voltas J, Araus JL (2005) Does higher yield potential improve barley performance in Mediterranean conditions? A case of study. Field Crop Res 91:149–160CrossRefGoogle Scholar
  190. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822PubMedCrossRefGoogle Scholar
  191. Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698CrossRefGoogle Scholar
  192. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  193. Tollenaar M (1989) Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci 29:1365–1371PubMedCrossRefGoogle Scholar
  194. Tollenaar M, Lee EA (2002) Yield stability and stress tolerance in maize. Field Crop Res 75:161–169CrossRefGoogle Scholar
  195. Tollenaar M, Wu J (1999) Yield in temperate maize is attributable to greater stress tolerance. Crop Sci 39:1597–1604CrossRefGoogle Scholar
  196. Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454PubMedCrossRefGoogle Scholar
  197. Trethowan RM, van Ginkel M, Rajaram S (2002) Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci 42:1441–1446CrossRefGoogle Scholar
  198. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozachi K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122PubMedCrossRefGoogle Scholar
  199. van Ginkel M, Calhoun DS, Gebeyehu G, MirandaA Tian-you C, Pargas Lara R, Trethowan RM, Sayre K, Crossa J, Rajaram S (1998) Plant traits related to yield of wheat in early, late, or continuous drought conditions. Euphytica 100:109–121CrossRefGoogle Scholar
  200. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  201. Venuprasad R, Lafittea HR, Atlina GN (2007) Response to direct selection for grain yield under drought stress in rice. Crop Sci 47:285–293CrossRefGoogle Scholar
  202. Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263CrossRefGoogle Scholar
  203. Villegas D, Aparicio N, Blanco R, Royo C (2001) Biomass accumulation and main stem elongation of durum wheat grown under Mediterranean conditions. Ann Bot 88:617–627CrossRefGoogle Scholar
  204. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132PubMedCrossRefGoogle Scholar
  205. Voltas J, Romagosa I, Muñoz P, Araus JL (1998) Mineral accumulation, carbon isotope discrimination and indirect selection for grain yield in two-rowed barley grown under semiarid conditions. Eur J Agron 9:147–155CrossRefGoogle Scholar
  206. Voltas J, Lopez-Corcoles H, Borras G (2005) Use of biplot analysis and factorial regression for the investigation of superior genotypes in multienvironment trials. Eur J Agron 22:309–324CrossRefGoogle Scholar
  207. Wade MJ (2002) A gene’s eye view of epistasis, selection, and speciation. J Evol Biol 15:337–346CrossRefGoogle Scholar
  208. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperature: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefGoogle Scholar
  209. Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Tennis DT, McCourt P, Huang Y (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424PubMedCrossRefGoogle Scholar
  210. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15:745–759PubMedCrossRefGoogle Scholar
  211. Xu JL, Lafitte HR, Gao YM, Fu BY, Torres R, Li ZK (2005) QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet 111:1642–1650PubMedCrossRefGoogle Scholar
  212. Yadav OP, Bhatnagar SK (2001) Evaluation of indices for identification of pearl millet cultivars adapted to stress and non-stress conditions. Field Crop Res 70:201–208CrossRefGoogle Scholar
  213. Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981PubMedCrossRefGoogle Scholar
  214. Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741–746PubMedCrossRefGoogle Scholar
  215. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989PubMedCrossRefGoogle Scholar
  216. Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci USA 104:16402–16409PubMedCrossRefGoogle Scholar
  217. Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621PubMedCrossRefGoogle Scholar
  218. Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C (2006) Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol 62:247–259PubMedCrossRefGoogle Scholar
  219. Zhang GH, Su Q, An LJ, Wu S (2008) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46:117–126PubMedCrossRefGoogle Scholar
  220. Zheng BS, Yang L, Zhang WP, Mao CZ, Wu YR, Yi KK, Liu FY, Wu P (2003) Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet 107:1505–1515PubMedCrossRefGoogle Scholar
  221. Zhong S, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364PubMedCrossRefGoogle Scholar
  222. Zhou SX, Tian F, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Identification of quantitative trait loci controlling drought tolerance at seedling stage in chinese dongxiang common wild rice (Oryza rufipogon Griff.). Acta Genet Sin 33:551–558PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Anna Maria Mastrangelo
    • 1
  • Elisabetta Mazzucotelli
    • 2
  • Davide Guerra
    • 2
  • Pasquale De Vita
    • 1
  • Luigi Cattivelli
    • 2
  1. 1.CRA – Cereal Research CentreFoggiaItaly
  2. 2.CRA – Genomics Research CentreFiorenzuola d’Arda (PC)Italy

Personalised recommendations