Skip to main content

Dryland Agriculture: Bringing Resilience to Crop Production Under Changing Climate

  • Chapter
  • First Online:
Crop Stress and its Management: Perspectives and Strategies

Abstract

Drylands of the world are affected in addition to the impending climate change by various other inherent biotic and abiotic limitations like water availability, declining soil quality and pest and disease infestations. The challenges facing dryland agriculture, global food security and the sustainable management of natural resources are many and are interrelated. Productivity of dryland crops can be increased only if the problems are understood well and in turn combated effectively. Major dryland agro ecological regions of the world and their problems are outlined in this chapter. Sustainable Natural Resource Management (SNRM) is stressed here as an important way to addresses the problems faced by these regions of the world. Resilience to predicted climate change will depend on increasing agricultural productivity with available water resources; refining technologies and timely deployment of affordable strategies to accomplish potential levels of arable land and water productivity. An account into the adaptation strategies to increase resilience to combat climate change related effects by management of water, soil and biodiversity are detailed here. We propose here that research on adaptive capability of crops by increasing their resilience to abiotic stresses, pests and diseases will have to expand to new horizons with a systems biology perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai Y, He J, Li H, Wang Q, Chen H, Kuhn NJ, Hikel H, Chen F, Gong Y (2009) Soil structure and crop performance after 10 years of controlled traffic and traditional tillage cropping in the dryland Loess Plateau in China. Soil Sci 174:113

    Article  CAS  Google Scholar 

  • Balkan A, Genctan T (2009) The effects of some photosynthesis organs on yield components in bread wheat. J Tekirdag Agric Fac 6:137–148

    Google Scholar 

  • Beazley L (2007) Climate change in Australia: regional impacts and adaptation: managing the risk for Australia. Beazley, Lyn Discussion Paper, Department of Education Science and Training, Canberra

    Google Scholar 

  • Biradar CM, Thenkabail PS, Noojipady P, Li Y, Dheeravath V, Turral H, Velpuri M, Gumma MK, Gangalakunta ORP, Cai XL (2009) A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int J Appl Earth Observ Geoinform 11:114–129

    Article  Google Scholar 

  • Blum W (2005) Soils and climate change. J Soils Sed 5:67–68

    Article  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112:119–123

    Article  Google Scholar 

  • Bowmer KH (2011) Water resource protection in Australia: links between land use and river health with a focus on stubble farming systems. J Hydrol 403(1–2):176–185.

    Google Scholar 

  • Carberry P, Keating B, Bruce S, Walcott J (July 2010) Technological innovation and productivity in dryland agriculture in Australia. A joint paper prepared by ABARE–BRS and CSIRO, Canberra

    Google Scholar 

  • Chakraborty S, Luck J, Hollaway G, Fitzgerald G, White N (2010) Rust-proofing wheat for a changing climate. Euphytica 179:19–32

    Article  Google Scholar 

  • Chapin FS III, Carpenter SR, Kofinas GP, Folke C, Abel N, Clark WC, Olsson P, Smith D, Walker B (2010) Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol Evol 25:241–249

    Article  PubMed  Google Scholar 

  • Chattopadhyay N (2011) Climate change and food security in India. In: Lal R et al (eds) Climate change and food security in South Asia. Springer, Dordrecht, pp 229–250

    Google Scholar 

  • Clair S, Lynch J (2010) The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Article  Google Scholar 

  • Collier P, Conway G, Venables T (2008) Climate change and Africa. Oxf Rev Econ Policy 24:337

    Article  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  PubMed  CAS  Google Scholar 

  • Darby BJ, Neher DA, Housman DC, Belnap J (2011) Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro-and meso-fauna. Soil Biol Biochem 43:1474–1481

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53

    Article  PubMed  CAS  Google Scholar 

  • Du W, Wang M, Fu S, Yu D (2009) Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics 36:721–731

    Article  PubMed  Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447

    Article  Google Scholar 

  • Estay SA, Lima M, Labra FA (2009) Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modelling. J Appl Entomol 133:491–499

    Article  Google Scholar 

  • FAO (2004) Carbon sequestration in dryland soils. World soil resources reports no 102, FAO, Rome

    Google Scholar 

  • FAO (2009) (continually updated) Statistical databases. Available at http://www.fao.org

  • Fedoroff NV, Battisti DS, Beachy RN, Cooper PJM, Fischhoff DA, Hodges CN, Knauf VC, Lobell D, Mazur BJ, Molden D (2010) Radically rethinking agriculture for the 21st century. Science 327:833

    Article  PubMed  CAS  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  PubMed  CAS  Google Scholar 

  • Fu G, Charles SP, Yu J, Liu C (2009) Decadal climatic variability, trends, and future scenarios for the North China Plain. J Clim 22:2111–2123

    Article  Google Scholar 

  • Goyal RK (2008) Techological options for management of wastelands in hot arid zone of India. Water Energy Abstr 18:35

    Google Scholar 

  • Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28:1453–1469

    Article  Google Scholar 

  • Hoff H, Falkenmark M, Gerten D, Gordon L, Karlberg L, Rockstrom J (2010) Greening the global water system. J Hydrol 384:177–186

    Article  Google Scholar 

  • Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR, Hice C, Jaksic F, Kelt DA, Letnic M (2006) Extreme climatic events shape arid and semiarid ecosystems. Front Ecol Environ 4:87–95

    Article  Google Scholar 

  • Joshi MK, Pandey AC (2011) Trend and spectral analysis of rainfall over India during 1901–2000. J Geophys Res 116:D06104

    Article  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    Article  PubMed  CAS  Google Scholar 

  • Kahlon MS, Lal R (2011) Enhancing green water in soils of South Asia. J Crop Improv 25:101–133

    Article  Google Scholar 

  • Kamara AY, Ekeleme F, Chikoye D, Omoigui LO (2009) Planting date and cultivar effects on grain yield in dryland corn production. Agron J 101:91–98

    Article  Google Scholar 

  • Kishine M, Suzuki K, Nakamura S, Ohtsubo K (2008) Grain qualities and their genetic derivation of 7 new rice for Africa (NERICA) varieties. J Agric Food Chem 56:4605–4610

    Article  PubMed  CAS  Google Scholar 

  • Kolarkar AS, Murthy K, Singh N (1983) Khadin – a method of harvesting water for agriculture in the Thar desert. J Arid Environ 6:59–66

    Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461

    Article  PubMed  Google Scholar 

  • Krishnamurthy V, Shukla J (2000) Intraseasonal and interannual variability of rainfall over India. J Clim 13:4366–4377

    Article  Google Scholar 

  • Kumar KR, Sahai AK, Kumar KK, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90:334–345

    Google Scholar 

  • Lal R (2009) Managing soil resilience for a warming climate and decreasing resources. In: Brainstorming workshop on climate change, soil quality and food security, 17

    Google Scholar 

  • Langhans C, Govers G, Diels J, Leys A, Clymans W, Van en Putte A, Valckx J (2011) Experimental rainfall-runoff data: reconsidering the concept of infiltration capacity. J Hydrol 339:255–262

    Article  Google Scholar 

  • Laws AN, Belovsky GE (2010) How will species respond to climate change? Examining the effects of temperature and population density on an herbivorous insect. Environ Entomol 39:312–319

    Article  PubMed  Google Scholar 

  • Li SX, Xiao L (1992) Distribution and management of drylands in the People’s Republic of China. Adv Soil Sci 18:148–302

    Google Scholar 

  • Li H, Gao H, Wu H, Li W, Wang X, He J (2007) Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Aust J Soil Res 45:344–350

    Article  Google Scholar 

  • Liu F, Wu Y, Xiao H, Gao Q (2005) Rainwater-harvesting agriculture and water-use efficiency in semi-arid regions in Gansu province, China. Outlook Agric 34:159–165

    Article  CAS  Google Scholar 

  • Luck J, Spackman M, Freeman A (2011) Climate change and diseases of food crops. Plant Pathol 60:113–121

    Article  Google Scholar 

  • Luke CM, Cox PM (2011) Soil carbon and climate change: from the Jenkinson effect to the compost-bomb instability. Eur J Soil Sci 62:5–12

    Article  Google Scholar 

  • Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, Pardha Saradhi P (2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol Plant 54:647–652

    Article  CAS  Google Scholar 

  • Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield–trait performance landscapes: from theory to application in breeding maize for drought tolerance. J Exp Bot 62:855

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki S, Takahashi K, Oki T (2010) Recent scientific findings and future outlook on climate change impacts, adaptation and vulnerability in the Working Group II contribution to the fourth assessment report of IPCC. J Jpn Soc Hydrol Water Resour 23:157–170

    Article  Google Scholar 

  • Mortimore M (2001) Overcoming variability and productivity constraints in Sahelian agriculture. In: Benjaminsen TA, Lund C (eds) Politics, property and production in the West African Sahel: understanding natural resources management. Elanders Gotab, Stockholm, pp 233–255

    Google Scholar 

  • Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 104:19680

    Article  PubMed  CAS  Google Scholar 

  • Mucheru-Muna M, Pypers P, Mugendi D, Kung’u J, Mugwe J, Merckx R, Vanlauwe B (2010) A staggered maize-legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Res 115:132–139

    Article  Google Scholar 

  • Murphy BF, Timbal B (2008) A review of recent climate variability and climate change in southeastern Australia. Int J Climatol 28:859–879

    Article  Google Scholar 

  • Ma Shijun (1988) Advances in mulch farming in China. In: Unger PW, Sneed TV, Jordan WR, Jensen R (eds). Challenges in dryland agriculture: a global perspective. Proc. International Conference on Dryland Farming, Amarillo/Bushland, USA. Texas Agricultural Experiment Station, USA pp 510-511

    Google Scholar 

  • Nearing MA, Pruski FF, O’Neal MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59:43

    Google Scholar 

  • Newton A, Johnson S, Gregory P (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Article  Google Scholar 

  • Nicholls N, Collins D (2006) Observed climate change in Australia over the past century. Energy Environ 17:1–12

    Article  Google Scholar 

  • Oweis T, Hachum A (2009) Water harvesting for improved rainfed agriculture in the dry environments (ch 9). In: Wani SP, Rockstörm J, Oweis T (eds) Rainfed agriculture: unlocking the potential. CABI, London, p 164

    Chapter  Google Scholar 

  • Patt AG, Tadross M, Nussbaumer P, Asante K, Metzger M, Rafael J, Goujon A, Brundrit G (2010) Estimating least-developed countries’ vulnerability to climate-related extreme events over the next 50 years. Proc Natl Acad Sci USA 107:1333

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971

    Article  PubMed  CAS  Google Scholar 

  • Qureshi JA (2010) Implications of climate change for Toxoptera citricida (Kirkaldy), a disease vector of citrus in Florida. In: Kindlmann P et al (eds) Aphid biodiversity under environmental change. Springer, Dordrecht, pp 91–106

    Chapter  Google Scholar 

  • Rao MS, Srinivas K, Vanaja M, Rao G, Venkateswarlu B, Ramakrishna YS (2009) Host plant (Ricinus communis Linn.) mediated effects of elevated CO2 on growth performance of two insect folivores. Curr Sci 97:1047

    CAS  Google Scholar 

  • Reid GH (2009) Building resilience to climate change in rain-fed agricultural enterprises: an integrated property planning tool. Agric Hum Values 26:391–397

    Article  Google Scholar 

  • Robinet C, Roques A (2010) Direct impacts of recent climate warming on insect populations. Integr Zool 5:132–142

    Article  PubMed  Google Scholar 

  • Rockström J, Lannerstad M, Falkenmark M (2007) Assessing the water challenge of a new green revolution in developing countries. Proc Natl Acad Sci USA 104:6253

    Article  PubMed  Google Scholar 

  • Rockström J, Karlberg L, Wani SP, Barron J, Hatibu N, Oweis T, Bruggeman A, Farahani J, Qiang Z (2010) Managing water in rainfed agriculture – the need for a paradigm shift. Agric Water Manage 97:543–550

    Article  Google Scholar 

  • Rockström J and Falkenmark, M. (2001). Semiarid crop production from a hydrological perspective: gap between potential and actual yields. Critical Reviews in Plant Sci 19:319–346

    Google Scholar 

  • Rosegrant MW, Cai X, Cline SA (2002) World water and food to 2025: dealing with scarcity. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405

    Article  Google Scholar 

  • Rost S, Gerten D, Hoff H, Lucht W, Falkenmark M, Rockström J (2009) Global potential to increase crop production through water management in rainfed agriculture. Environ Res Lett 4:044002

    Article  Google Scholar 

  • Saint Pierre C, Crossa J, Manes Y, Reynolds MP (2010) Gene action of canopy temperature in bread wheat under diverse environments. TAG Theor Appl Genet 120:1107–1117

    Article  Google Scholar 

  • Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci 14:488–496

    Article  PubMed  CAS  Google Scholar 

  • Sastry G, Reddy YVR, Singh HP (2004) Watershed based land management treatments for augmenting and sustaining water resources in different semi-arid regions of India. Indian J Dryland Agric Res Dev 19:68–77

    Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci USA 106:15594

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Shen Y, Kang E, Li D, Ding Y, Zhang G, Hu R (2007) Recent and future climate change in northwest China. Clim Change 80:379–393

    Article  CAS  Google Scholar 

  • Singh AK, Venkateswarlu B (2009) Climate change and rainfed agriculture. Indian J Dryland Agric Res Dev 24:1–9

    Google Scholar 

  • Sivakumar MVK, Stefanski R (2011) Climate change in South Asia. In: Lal R et al (eds) Climate change and food security in South Asia. Springer, Dordrecht, pp 13–30

    Google Scholar 

  • Solomon S (2007) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Stewart BA, Koohafkan P, Ramamoorthy K, Peterson GA, Unger PW, Payne WA (2006) Dryland agriculture defined and its importance to the world. In: Peterson GA et al (eds) Dryland agriculture. American Society of Agronomy, Wisconsin, pp 1–26

    Google Scholar 

  • Swaminathan MS (2010) Achieving food security in times of crisis. New Biotechnol 27:453–460

    Article  CAS  Google Scholar 

  • Thomas RJ (2008) Opportunities to reduce the vulnerability of dryland farmers in Central and West Asia and North Africa to climate change. Agric Ecosyst Environ 126:36–45

    Article  Google Scholar 

  • Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52:296–306

    Article  Google Scholar 

  • Tuberosa R, Giuliani S, Parry MAJ, Araus JL (2007) Improving water use efficiency in Mediterranean agriculture: what limits the adoption of new technologies? Ann Appl Biol 150:157–162

    Article  Google Scholar 

  • Tubiello FN, Fischer G (2007) Reducing climate change impacts on agriculture: global and regional effects of mitigation, 2000–2080. Technol Forecast Soc Chang 74:1030–1056

    Article  Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation stategies. Indian J Agron 54:226–230

    Google Scholar 

  • Venkateswarlu B, Srinivasarao CH, Ramesh G, Venkateswarlu S, Katyal JC (2007) Effects of long term legume cover crop incorporation on soil organic carbon, microbial biomass, nutrient build up and grain yields of sorghum/sunflower under rain fed conditions. Soil Use Manage 23:100–107

    Article  Google Scholar 

  • Wang XB, Cai DX, Hoogmoed WB, Oenema O, Perdok UD (2007) Developments in conservation tillage in rainfed regions of North China. Soil Tillage Res 93:239–250

    Article  Google Scholar 

  • Woodhouse P (2009) Technology, environment and the productivity problem in African agriculture: comment on the world development report 2008. J Agrar Chang 9:263–276

    Article  Google Scholar 

  • Yanxiang L, Tongwen W, Yufu G, Jinghui Y (2007) Prediction research of climate change trends over North China in the future 30 years. Acta Meteor Sinica 65:45–51

    Google Scholar 

  • You L, Rosegrant MW, Wood S, Sun D (2009) Impact of growing season temperature on wheat productivity in China. Agric For Meteorol 149:1009–1014

    Article  Google Scholar 

  • Zacharias M, Singh SD, Kumar SN, Aggarwal PK, Harit RC (2010) Impact of elevated temperature at different phenological stages on the growth and yield of wheat and rice. Indian J of Plant Physiol 15:250–258

    Google Scholar 

  • Zavala JA, Casteel CL, DeLucia EH, Berenbaum MR (2008) Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc Natl Acad Sci USA 105:5129

    Article  PubMed  CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Shanker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Venkateswarlu, B., Shanker, A.K. (2012). Dryland Agriculture: Bringing Resilience to Crop Production Under Changing Climate. In: Venkateswarlu, B., Shanker, A., Shanker, C., Maheswari, M. (eds) Crop Stress and its Management: Perspectives and Strategies. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2220-0_2

Download citation

Publish with us

Policies and ethics