Skip to main content

Plant – Nematode Interactions: Consequences of Climate Change

  • Chapter
  • First Online:
Crop Stress and its Management: Perspectives and Strategies

Abstract

Plant pathogenic nematodes are one of the important biotic constraints in crop production. Climate change due to increased emission of greenhouse gases is posing a serious challenge to sustainability of crop production by interfering with biotic and abiotic components and their interactions with each other. Global warming resulting in elevated carbon dioxide (CO2) and temperature in the atmosphere may influence plant pathogenic nematodes directly by interfering with their developmental rate and survival strategies and indirectly by altering host plant physiology. Available information on effect of global warming on plant pathogenic nematodes though limited, indicate that nematodes show a neutral or positive response to CO2 enrichment effects with some species showing the potential to build up rapidly and interfere with plant’s response to global warming. Studies have also demonstrated that the geographical distribution range of plant pathogenic nematodes may expand with global warming spreading nematode problems to newer areas. Besides plant parasites, other trophic groups (microbial feeders, predators and insect parasites) of soil nematodes also shown to influence the plant productivity indirectly by regulating the key ecosystem processes including decomposition, nutrient mineralization, biological pest suppression and energy transfer in food webs. These findings underline the importance of understanding the impact of climate change on soil nematodes and its implications to crop production while developing mitigation and adaptation strategies to address impact of climate change on agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad W, Jairajpuri MS (2010) Mononchida: the predatory soil nematodes. Brill Academic, Leiden, p 298

    Book  Google Scholar 

  • Atoninka A, Reich PB, Johnson PB (2009) Predator nematodes decline with long-term CO2 enrichment. Abstracts of the 94th ESA annual meeting (2–7 Aug 2009), PS80-51, New Mexico

    Google Scholar 

  • Ayres E, Wall DH, Simmons BL, Field CB, Milchunas DG, Morgan JA, Roy J (2008) Below-ground nematode herbivores are resistant to elevated atmospheric CO2 concentrations in grassland ecosystems. Soil Biol Biochem 40:978–985

    Article  CAS  Google Scholar 

  • Barret JE, Virginia RA, Wall DH, Adams BJ (2008) Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem. Glob Change Biol 14:1734–1744

    Article  Google Scholar 

  • Boland GJ, Melzer MS, Hopkin A, Higgins V, Nassuth A (2004) Climate change and plant diseases in Ontario. Can J Plant Pathol 26:335–350

    Article  Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228

    Google Scholar 

  • Carter TR, Saarikko RA, Niemi KJ (1996) Assessing the risks and uncertainties of regional crop potential under a changing climate in Finland. Agric Food Sci Finl 5:329–350

    Google Scholar 

  • Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Manag Sci 59:748–753

    Article  PubMed  CAS  Google Scholar 

  • De Waele D, Elsen A (2007) Challenges in tropical plant nematology. Annu Rev Phytopathol 45:457–485

    Article  PubMed  Google Scholar 

  • Drigo B, Kowalchuk GA, Yergeau E, Bezemer TM, Boschker HT, vanVeen JA (2007) Impacts of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuca rubra. Glob Change Biol 13:2396–2410

    Article  Google Scholar 

  • Evans AF, Perry RN (2009) Survival mechanisms. In: Perry RN, Moens M, Starr JL (eds) Root knot nematodes. CABI, Wallingford, pp 201–219

    Chapter  Google Scholar 

  • Ferris H, Bongers T, de Goede RGM (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29

    Article  Google Scholar 

  • Frederiksen HB, Ronn R, Christensen S (2001) Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw. Glob Change Biol 7:313–321

    Article  Google Scholar 

  • Ghini R, Hamada E, Pedro Júnior MJ, Marengo JA, Gonçalves RRV (2008) Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesqui Agropecu Bras 43:187–194

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medinaelizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Article  PubMed  CAS  Google Scholar 

  • Hoeksema JD, Lussenhop J, Teeri JA (2000) Soil nematodes indicate food web responses to elevated atmospheric CO2. Pedobiologia 44:725–735

    Article  Google Scholar 

  • Hungate BA, Jaeger CH, Gamara G, Chapin FS, Field CB (2000) Soil microbiota in two annual grasslands: responses to elevated atmospheric CO2. Oecologia 124:589–598

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. IPCC/WG I, Geneva, 881 p (Assessment report, 3)

    Google Scholar 

  • IPCC (2007) IPCC Fourth Assessment Report (AR4). Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC), Geneva

    Google Scholar 

  • Jablonska B, Ammiraju JSS, Bhattarai KK, Mantelin S, Ilarduya OM, Roberts PA, Kaloshian I (2007) The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi1. Plant Physiol 143:1044–1054

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Mathur KN, Singh RV (2007) Estimation of losses due to plant parasitic nematodes on different crops in India. Indian J Nematol 37:219–221

    Google Scholar 

  • Jenssen P, Strauch O, Wyss U, Luttmann R, Ehlers RU (2000) Carbon dioxide triggers recovery from dauer juvenile stage in entomopathogenic nematodes (Heterorhabditis spp.). Nematology 2(3):319–324

    Article  Google Scholar 

  • Kaya KK, Aguillera MM, Alumai A, Choo HY, Torre M, Fodor A, Ganguly S, Hazar H, Lakatos T, Pye A, Wilson M, Yamanaka S, Yang H, Ehlers RU (2006) Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biol Control 38:134–155

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Li Q, Liang WJ, Jiang Y, Neher DA (2007) Effect of elevated CO2 and N fertilization on soil nematode abundance and diversity in wheat field. Appl Soil Ecol 36:63–69

    Article  Google Scholar 

  • Li Q, Xu C, Liang W, Zhong S, Zhend X, Zhu J (2009) Residue incorporation and N fertilization affect the response of soil nematodes to the elevated CO2 in a Chinese wheat field. Soil Biol Biochem 41:1497–1503

    Article  CAS  Google Scholar 

  • Mayer A (2008) On Antarctic ice: life at low diversity. Bioscience 58(7):580–585

    Article  Google Scholar 

  • Neher DA, Weicht TR, Moorhead DL, Sinsabaugh RL (2004) Elevated CO2 alters functional attributes of nematode communities in forests oils. Funct Ecol 18:584–591

    Article  Google Scholar 

  • Neilson R, Boag B (1996) The predicted impact of possible climatic change on virus-vector nematodes in Great Britain. Eur J Plant Pathol 102:193–199

    Article  Google Scholar 

  • Niblack TL (2005) Soybean cyst nematode management reconsidered. Plant Dis 89(10):1020–1026

    Article  Google Scholar 

  • Niklaus PA, Alphei J, Ebersberger D, Kampichler C, Kandeler E, Tscherko D (2003) Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland. Glob Change Biol 9:585–600

    Article  Google Scholar 

  • Papadopoulou J, Triantaphyllou AC (1982) Sex differentiation in Meloidogyne incognita and anatomical evidence of sex reversal. J Nematol 14:549–566

    PubMed  CAS  Google Scholar 

  • Prasad JS, Somasekhar N (2009) Nematode pests of rice: diagnosis and management. Technical bulletin no. 38, Directorate of Rice Research (ICAR), Hyderabad, pp 29

    Google Scholar 

  • Raven JA, Karley AJ (2006) Carbon sequestration: photosynthesis and subsequent processes. Curr Biol 16(5):165–167

    Article  Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9

    Article  Google Scholar 

  • Rezácová V, Blum H, Hrselová H, Gamper H, Gryndler M (2005) Saprobic microfungi under Lolium perenne and Trifolium repens at different fertilization intensities and elevated atmospheric CO2 concentration. Glob Change Biol 11:224–230

    Article  Google Scholar 

  • Richmond DS, Kunkel BA, Somasekhar N, Grewal PS (2004) Top-down and bottom-up regulation of herbivores: Spodoptera frugiperda turns tables on endophyte mediated plant defence and virulence of an entomopathogenic nematode. Ecol Entomol 29:353–360

    Article  Google Scholar 

  • Rogers HH, Runion GB, Krupa SV (1994) Plant responses to atmospheric CO2 enrichment with an emphasis on roots and the rhizosphere. Environ Pollut 83:155–189

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig C, Liverman D (1992) Predicted effects of climate change on agriculture: a comparison of temperate and tropical regions. In: Majumdar SK (ed) Global climate change: implications, challenges, and mitigation measures. The Pennsylvania Academy of Sciences, Philadelphia, pp 342–361

    Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2000) Implications of climate change for U.S. agriculture: extreme weather events, plant diseases, and pests. Center for Health and the Global Environment, Harvard Medical School, Cambridge, 56 pp

    Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events- implications for food production, plant diseases, and pests. Glob Change Hum Health 2:90–104

    PubMed  CAS  Google Scholar 

  • Ruess L (2003) Nematode soil faunal analysis of decomposition pathways in different ecosystems. Nematology 5:179-181

    Google Scholar 

  • Sasser SN, Freckman DW (1987) A world perspective on nematology: role of society. In: Veech JA, Dickson DW (eds) Vistas on nematology: society of nematologists, USA pp 7–14

    Google Scholar 

  • Somasekhar N, Prasad JS (2009) Root-knot nematode Meloidogyne graminicola – an emerging threat to rice cultivation. DRR Newsl 7(4):3–4

    Google Scholar 

  • Somasekhar N, Prasad JS (2010) Nematological considerations in addressing impact of climate change on agriculture. In: Proceedings of national symposium on innovations in nematological research, 22–24 Feb 2010. Tamilnadu Agricultural University, Coimbatore

    Google Scholar 

  • Somasekhar N, Prasad JS, Ganguly AK (2011) Impact of climate change on soil nematodes: implications for sustainable agriculture. Indian J Nematol 40:125–134

    Google Scholar 

  • Sonnemann I, Wolters V (2005) The microfood web of grassland soils respond to a moderate increase in atmospheric CO2. Glob Change Biol 11:1148–1155

    Article  Google Scholar 

  • Sticht C, Schrader S, Giesemann A, Weigel HJ (2009) Sensitivity of nematode feeding types in arable soil to free air CO2 enrichment (FACE) is crop specific. Pedobiologia 52:337–349

    Article  Google Scholar 

  • Sun Y, Yin J, Cao H, Li C, Ge F (2011) Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS One 6:e19751

    Article  PubMed  CAS  Google Scholar 

  • Tarnawski S, Aragno M (2006) The influence of elevated CO2 on diversity, activity and biogeochemical function of rhizosphere and soil bacterial communities. Ecol Stud 187:393–409

    Article  CAS  Google Scholar 

  • Tzortzakakis EA, Trudgill DL (2005) A comparative study of the thermal time requirements for embryogenesis in Meloidogyne javanica and M. incognita. Nematology 7:313–315

    Article  Google Scholar 

  • van der Putten WH, Cook R, Costa S, Davies KG, Fargette M, Freitas H, Hol WHG, Kerry BR, Maher N, Mateille T, Moens M, de la Pen E, Piskiewicz AM, Raeymaekers ADW, Rodriguez-Echeverrı´ S, van der Wurff AWG (2006) Nematode interactions in nature: models for sustainable control of nematode pests of crop plants? Adv Agron 89:227–260

    Article  Google Scholar 

  • Wardle DA, Yeates GW, Watson RN, Nicholson KS (1995) Development of the decomposer food-web, trophic relationships, and ecosystem properties during a 3-year primary succession in sawdust. Oikos 73:155–166

    Article  Google Scholar 

  • Wharton DA (2002) Life at the limits: organisms in extreme environments. Cambridge University Press, Cambridge, p 307

    Book  Google Scholar 

  • Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403

    Article  PubMed  CAS  Google Scholar 

  • Wilsey BJ (2001) Effects of elevated CO2 on the response of phleum pratense and poa pratensis to aboveground defoliation and root-feeding nematodes. Int J Plant Sci 162(6):1275–1282

    Article  Google Scholar 

  • Yeates GW, Orchard VA (1993) Response of pasture soil faunal populations and decomposition processes to elevated carbon dioxide and temperature: a climate chamber experiment. Australas Conf Grassland Invert Ecol 6:148–154

    Google Scholar 

  • Yeates GW, Tate KR, Newton PCD (1997) Response of the fauna of a grassland soil to doubling of atmospheric carbon dioxide concentration. Biol Fertil Soils 25:307–315

    Article  CAS  Google Scholar 

  • Yeates GW, Newton PCD, Ross DJ (1999) Response of soil nematode fauna to naturally elevated CO2 levels influenced by soil pattern. Nematology 1:285–293

    Article  Google Scholar 

  • Yeates GW, Newton PCD, Ross DJ (2003) Significant changes in soil microfauna in grazed pasture under elevated carbon dioxide. Biol Fertil Soils 38:319–326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nethi Somasekhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Somasekhar, N., Prasad, J.S. (2012). Plant – Nematode Interactions: Consequences of Climate Change. In: Venkateswarlu, B., Shanker, A., Shanker, C., Maheswari, M. (eds) Crop Stress and its Management: Perspectives and Strategies. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2220-0_17

Download citation

Publish with us

Policies and ethics