Transient Expression Using Agroinfiltration and Its Applications in Molecular Farming

  • Rima Menassa
  • Adil Ahmad
  • Jussi J. Joensuu


Transient expression via agroinfiltration and/or viral vectors has quickly emerged as the preferred expression system for plant-made recombinant proteins. Transient expression can serve as a valuable research tool for finding optimal expression parameters before tedious and time-consuming production of stable transgenic plants or it can be scaled up to commercial production scale with vacuum infiltration. This technology is poised to compete with conventional production systems, large-scale production facilities are currently available and others are in the process of development. This chapter will introduce background and rationale in development of transient expression systems in plants and summarize the latest developments and examples in this area.


Human Immunodeficiency Virus Recombinant Protein Human Papilloma Virus Vacuum Infiltration Transient Expression System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a grant from an A-base grant from Agriculture and Agri-Food Canada and the Agricultural Bioproducts Innovation Program.


  1. Aggarwal S (2009) What’s fueling the biotech engine – 2008. Nat Biotechnol 27:987–993CrossRefGoogle Scholar
  2. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase – an overview. Biotechnol Adv 27:489–501CrossRefGoogle Scholar
  3. Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55:244–265CrossRefGoogle Scholar
  4. Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L, Tortolero-Luna G, Kjaer SK, Muñoz N (2008) Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine 26:K1–K16CrossRefGoogle Scholar
  5. Chen Q, He J, Phoolcharoen W, Mason HS (2011) Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccin 7:331–338CrossRefGoogle Scholar
  6. Conley AJ, Joensuu JJ, Jevnikar AM, Menassa R, Brandle JE (2009a) Optimization of elastin-like polypeptide fusions for expression and purification of recombinant proteins in plants. Biotechnol Bioeng 103:562–573CrossRefGoogle Scholar
  7. Conley AJ, Joensuu JJ, Menassa R, Brandle JE (2009b) Induction of protein body formation in plant leaves by elastin-like polypeptide fusions. BMC Biol 7:48CrossRefGoogle Scholar
  8. Conley AJ, Zhu H, Le LC, Jevnikar AM, Lee BH, Brandle JE, Menassa R (2011) Recombinant protein production in a variety of Nicotiana hosts: a comparative analysis. Plant Biotechnol J 9:434–444CrossRefGoogle Scholar
  9. D’Aoust MA, Lavoie PO, Couture MMJ, Trépanier S, Guay JM, Dargis M, Mongrand S, Landry N, Ward BJ, Vézina LP (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6:930–940CrossRefGoogle Scholar
  10. D’Aoust M-A, Couture M, Ors F, Trepanier S, Lavoie P-O, Dargis M, Vézina L-P, Landry N (2009) Recombinant influenza virus-like particles (VLPs) produced in transgenic plants expressing hemagglutinin. International patent application PCT/CA2009/000032Google Scholar
  11. D’Aoust M, Couture MM, Charland N, Trépanier S, Landry N, Ors F, Vézina L (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8:607–619CrossRefGoogle Scholar
  12. Dalmay T, Hamilton A, Mueller E, Baulcombe DC (2000) Potato virus X amplicons in Arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell 12:369–379CrossRefGoogle Scholar
  13. De Virgilio M, De Marchis F, Bellucci M, Mainieri D, Rossi M, Benvenuto E, Arcioni S, Vitale A (2008) The human immunodeficiency virus antigen Nef forms protein bodies in leaves of transgenic tobacco when fused to zeolin. J Exp Bot 59:2815–2829CrossRefGoogle Scholar
  14. Dus Santos MJ, Wigdorovitz A, Trono K, Rios RD, Franzone PM, Gil F, Moreno J, Carrillo C, Escribano JM, Borca MV (2002) A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants. Vaccine 20:1141–1147CrossRefGoogle Scholar
  15. Emau P, Tian B, O’Keefe BR, Mori T, McMahon JB, Palmer KE, Jiang Y, Bekele G, Tsai CC (2007) Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide. J Med Primatol 36:244–253CrossRefGoogle Scholar
  16. Geli MI, Torrent M, Ludevid D (1994) Two structural domains mediate two sequential events in gamma-zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell 6:1911–1922CrossRefGoogle Scholar
  17. Giorgi C, Franconi R, Rybicki EP (2010) Human papillomavirus vaccines in plants. Expert Rev Vaccines 9:913–924CrossRefGoogle Scholar
  18. Giritch A, Marillonnet S, Engler C, Van Eldik G, Botterman J, Klimyuk V, Gleba Y (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectros. Proc Natl Acad Sci USA 103:14701–14706CrossRefGoogle Scholar
  19. Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048CrossRefGoogle Scholar
  20. Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141CrossRefGoogle Scholar
  21. Gray BN, Ahner BA, Hanson MR (2009) High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102:1045–1054CrossRefGoogle Scholar
  22. Hakanpaa J, Paananen A, Askolin S, Nakari-Setala T, Parkkinen T, Penttila M, Linder MB, Rouvinen J (2004) Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem 279:534–539CrossRefGoogle Scholar
  23. Hiatt A, Pauly M (2006) Monoclonal antibodies from plants: a new speed record. Proc Natl Acad Sci USA 103:14645–14646CrossRefGoogle Scholar
  24. Hobbs SLA, Kpodar P, DeLong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864CrossRefGoogle Scholar
  25. Huang Z, Mason HS (2004) Conformational analysis of hepatitis B surface antigen fusions in an Agrobacterium-mediated transient expression system. Plant Biotechnol J 2:241–249CrossRefGoogle Scholar
  26. Huang Z, Santi L, LePore K, Kilbourne J, Arntzen CJ, Mason HS (2006) Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine 24:2506–2513CrossRefGoogle Scholar
  27. Huang Z, LePore K, Elkin G, Thanavala Y, Mason HS (2008) High-yield rapid production of hepatitis B surface antigen in plant leaf by a viral expression system. Plant Biotechnol J 6:202–209CrossRefGoogle Scholar
  28. Jefferis R (2009) Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 30:356–362CrossRefGoogle Scholar
  29. Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R (2010) Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol 152:622–633CrossRefGoogle Scholar
  30. Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108CrossRefGoogle Scholar
  31. Karasev AV, Foulke S, Wellens C, Rich A, Shon KJ, Zwierzynski I, Hone D, Koprowski H, Reitz M (2005) Plant based HIV-1 vaccine candidate: Tat protein produced in spinach. Vaccine 23:1875–1880CrossRefGoogle Scholar
  32. Krysan PJ, Young JC, Jester PJ, Monson S, Copenhaver G, Preuss D, Sussman MR (2002) Characterization of T-DNA insertion sites in Arabidopsis thaliana and the implications for saturation mutagenesis. Omics 6:163–174CrossRefGoogle Scholar
  33. Lichty JJ, Malecki JL, Agnew HD, Michelson-Horowitz DJ, Tan S (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41:98–105CrossRefGoogle Scholar
  34. Lienard D, Sourrouille C, Gomord V, Faye L (2007) Pharming and transgenic plants. Biotechnol Annu Rev 13:115–147CrossRefGoogle Scholar
  35. Linder MB, Qiao M, Laumen F, Selber K, Hyytia T, Nakari-Setala T, Penttila ME (2004) Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems. Biochemistry 43:11873–11882CrossRefGoogle Scholar
  36. Linder MB, Szilvay GR, Nakari-Setala T, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896CrossRefGoogle Scholar
  37. Llop-Tous I, Madurga S, Giralt E, Marzabal P, Torrent M, Ludevid MD (2010) Relevant elements of a Maize γ-zein domain involved in protein body biogenesis. J Biol Chem 285:35633–35644CrossRefGoogle Scholar
  38. Llop-Tous I, Ortiz M, Torrent M, Ludevid MD (2011) The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants. PLoS One 6:e19474CrossRefGoogle Scholar
  39. Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268:716–719CrossRefGoogle Scholar
  40. Maclean J, Koekemoer M, Olivier AJ, Stewart D, Hitzeroth II, Rademacher T, Fischer R, Williamson AL, Rybicki EP (2007) Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol 88:1460–1469CrossRefGoogle Scholar
  41. Marusic C, Vitale A, Pedrazzini E, Donini M, Frigerio L, Bock R, Dix PJ, McCabe MS, Bellucci M, Benvenuto E (2009) Plant-based strategies aimed at expressing HIV antigens and neutralizing antibodies at high levels. Nef as a case study. Transgenic Res 18:499–512CrossRefGoogle Scholar
  42. Menassa R, Du C, Yin ZQ, Ma S, Poussier P, Brandle J, Jevnikar AM (2007) Therapeutic effectiveness of orally administered transgenic low-alkaloid tobacco expressing human interleukin-10 in a mouse model of colitis. Plant Biotechnol J 5:50–59CrossRefGoogle Scholar
  43. Mett V, Musiychuk K, Bi H, Farrance CE, Horsey A, Ugulava N, Shoji Y, de la Rosa P, Palmer GA, Rabindran S et al (2008) A plant-produced influenza subunit vaccine protects ferrets against virus challenge. Influenza Other Respir Viruses 2:33–40CrossRefGoogle Scholar
  44. Meyers A, Chakauya E, Shephard E, Tanzer FL, Maclean J, Lynch A, Williamson AL, Rybicki EP (2008) Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol 8:53CrossRefGoogle Scholar
  45. Mishra S, Yadav DK, Tuli R (2006) Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. J Biotechnol 127:95–108CrossRefGoogle Scholar
  46. Molina A, Hervas-Stubbs S, Daniell H, Mingo-Castel AM, Veramendi J (2004) High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol J 2:141–153CrossRefGoogle Scholar
  47. Mori T, O’Keefe BR, Sowder Ii RC, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW Jr, McMahon JB et al (2005) Isolation and characterization of Griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 280:9345–9353CrossRefGoogle Scholar
  48. Musiychuk K, Stephenson N, Bi H, Farrance CE, Orozovic G, Brodelius M, Brodelius P, Horsey A, Ugulava N, Shamloul AM et al (2007) A launch vector for the production of vaccine antigens in plants. Influenza Other Respir Viruses 1:19–25CrossRefGoogle Scholar
  49. Nuttall J, Ma JKC, Frigerio L (2005) A functional antibody lacking N-linked glycans is efficiently folded, assembled and secreted by tobacco mesophyll protoplasts. Plant Biotechnol J 3:497–504CrossRefGoogle Scholar
  50. O’Keefe BR, Vojdani F, Buffa V, Shattock RJ, Montefiori DC, Bakke J, Mirsalis J, D’’Andrea AL, Hume SD, Bratcher B et al (2009) Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. Proc Natl Acad Sci USA 106:6099–6104CrossRefGoogle Scholar
  51. Obregon P, Chargelegue D, Drake PM, Prada A, Nuttall J, Frigerio L, Ma JK (2006) HIV-1 p24-immunoglobulin fusion molecule: a new strategy for plant-based protein production. Plant Biotechnol J 4:195–207CrossRefGoogle Scholar
  52. Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J (2007) Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 16:239–249CrossRefGoogle Scholar
  53. Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP (2002) Making an ally from an enemy: plant virology and the new agriculture. Annu Rev Phytopathol 40:45–74CrossRefGoogle Scholar
  54. Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M et al (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654CrossRefGoogle Scholar
  55. Raju K, Anwar RA (1987) A comparative analysis of the amino acid and cDNA sequences of bovine elastin a and chick elastin. Biochem Cell Biol 65:842–845CrossRefGoogle Scholar
  56. Regnard GL, Halley-Stott RP, Tanzer FL, Hitzeroth II, Rybicki EP (2010) High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol J 8:38–46CrossRefGoogle Scholar
  57. Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8:620–637CrossRefGoogle Scholar
  58. Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148:1212–1218CrossRefGoogle Scholar
  59. Scheller J, Leps M, Conrad U (2006) Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptides. Plant Biotechnol J 4:243–249CrossRefGoogle Scholar
  60. Shoji Y, Chichester JA, Bi H, Musiychuk K, de la Rosa P, Goldschmidt L, Horsey A, Ugulava N, Palmer GA, Mett V et al (2008) Plant-expressed HA as a seasonal influenza vaccine candidate. Vaccine 26:2930–2934CrossRefGoogle Scholar
  61. Shoji Y, Bi H, Musiychuk K, Rhee A, Horsey A, Roy G, Green B, Shamloul M, Farrance CE, Taggart B et al (2009a) Plant-derived hemagglutinin protects ferrets against challenge infection with the A/Indonesia/05/05 strain of avian influenza. Vaccine 27:1087–1092CrossRefGoogle Scholar
  62. Shoji Y, Farrance CE, Bi H, Shamloul M, Green B, Manceva S, Rhee A, Ugulava N, Roy G, Musiychuk K et al (2009b) Immunogenicity of hemagglutinin from a/Bar-headed Goose/Qinghai/1A/05 and a/Anhui/1/05 strains of H5N1 influenza viruses produced in nicotiana benthamiana plants. Vaccine 27:3467–3470CrossRefGoogle Scholar
  63. Strasser R, Stadlmann J, Schähs M, Stiegler G, Quendler H, Mach L, Glössl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402CrossRefGoogle Scholar
  64. Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L et al (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485CrossRefGoogle Scholar
  65. Talbot NJ (1999) Fungal biology. Coming up for air and sporulation. Nature 398:295–296CrossRefGoogle Scholar
  66. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533Google Scholar
  67. Thanavala Y, Mahoney M, Pal S, Scott A, Richter L, Natarajan N, Goodwin P, Arntzen CJ, Mason HS (2005) Immunogenicity in humans of an edible vaccine for hepatitis B. Proc Natl Acad Sci USA 102:3378–3382CrossRefGoogle Scholar
  68. Torrent M, Llompart B, Lasserre-Ramassamy S, Llop-Tous I, Bastida M, Marzabal P, Westerholm-Parvinen A, Saloheimo M, Heifetz PB, Ludevid MD (2009) Eukaryotic protein production in designed storage organelles. BMC Biol 7:5Google Scholar
  69. Urry DW (1988) Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem 7:1–34CrossRefGoogle Scholar
  70. Vézina LP, Faye L, Lerouge P, D’Aoust MA, Marquet-Blouin E, Burel C, Lavoie PO, Bardor M, Gomord V (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7:442–455CrossRefGoogle Scholar
  71. Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA 96:14147–14152CrossRefGoogle Scholar
  72. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956CrossRefGoogle Scholar
  73. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252CrossRefGoogle Scholar
  74. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273CrossRefGoogle Scholar
  75. Yusibov V, Modelska A, Steplewski K, Agadjanyan M, Weiner D, Hooper DC, Koprowski H (1997) Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proc Natl Acad Sci USA 94:5784–5788CrossRefGoogle Scholar
  76. Zambryski P (1988) Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu Rev Genet 22:1–30CrossRefGoogle Scholar
  77. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33CrossRefGoogle Scholar
  78. Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AMI, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913CrossRefGoogle Scholar
  79. Ziółkowska NE, O’Keefe BR, Mori T, Zhu C, Giomarelli B, Vojdani F, Palmer KE, McMahon JB, Wlodawer A (2006) Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. Structure 14:1127–1135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Southern Crop Protection and Food Research CentreAgriculture and Agri-Food CanadaLondonCanada
  2. 2.VTT Biotechnology, Technical Research Centre of FinlandEspooFinland

Personalised recommendations