Production of Industrial Proteins in Plants

Chapter

Abstract

The plant production system is advantageous for industrial enzymes. Enzymes with large scale products that demand low cost manufacturing are the markets of choice for plants. The plant production system is also advantageous for products that are harmful to single cell systems, for example oxidation/reduction (redox) enzymes. Four classes of enzymes are discussed in this chapter—xylanases, redox enzymes, amylases and cellulases. Examples of each of these classes of enzyme have been produced in plants—some as demonstration projects, others with the intent to sell the product. The authors have chosen specific examples to describe the advantages of the plant system, issues that have arisen, and potential for addressing markets. These case studies illustrate the value of using plants for production with simple agricultural inputs of sunlight, nutrients and water. With the developing demand for biofuels and biobased products, large volume enzyme markets for processing agricultural materials are rapidly becoming a demand. The logical system for producing those enzymes is in co-products of the feedstock materials. Our examples below illustrate the system.

References

  1. Alexander RJ (1994) In: Watson SA, Ramstad PE (eds) Corn dry milling: Processes, products and applications. American Association of Cereal Chemists, Inc., St. Paul, pp 351–376Google Scholar
  2. Austin S, Bingham ET, Koegel RG, Mathews DE, Shahan MN, Straub RJ, Burgess RR (1994) An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. Ann N Y Acad Sci 721:234–244CrossRefGoogle Scholar
  3. Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica 85:381–393. doi:10.1007/BF00023971 CrossRefGoogle Scholar
  4. Bae H-J, Kim HJ, Kim YS (2008) Production of a recombinant xylanase in plants and its potential for pulp biobleaching applications. Bioresour Technol 99:3513–3519. doi:10.1016/j.biortech.2007.07.064 CrossRefGoogle Scholar
  5. Bailey MR, Woodard SL, Callaway E, Beifuss K, Magallanes-Lundback M, Lane JR, Horn ME, Mallubhotla H, Delaney DD, Ward M, Van Gastel F, Howard JA, Hood EE (2004) Improved recovery of active recombinant laccase from maize seed. Appl Microbiol Biotechnol 63:390–397CrossRefGoogle Scholar
  6. Baker J, Ehrman C, Adney W, Thomas S, Himmel M (1998) Hydrolysis of cellulose using ternary mixtures of purified celluloses. Appl Biochem Biotechnol 70–72:395–403CrossRefGoogle Scholar
  7. Banci L, Bartalesi I, Ciofi-Baffoni S, Ming T (2003) Unfolding and pH studies on manganese peroxidase: role of heme and calcium on secondary structure stability. Biopolymers 72:38–47CrossRefGoogle Scholar
  8. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. BioEnergy Res 3:82–92. doi:10.1007/s12155-009-9067-5 CrossRefGoogle Scholar
  9. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338. doi:10.1007/s002530100704 CrossRefGoogle Scholar
  10. Belanger FC, Kriz AL (1991) Molecular basis for allelic polymorphism of the maize Globulin-1 gene. Genetics 129:863–872Google Scholar
  11. Bergquist P, Te’o V, Gibbs M, Cziferszky A, de Faria F, Azevedo M, Nevalainen H (2002) Expression of xylanase enzymes from thermophilic microoroganisms in fungal hosts. Extremophiles 6:177–184CrossRefGoogle Scholar
  12. Bhat MK (2002) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383CrossRefGoogle Scholar
  13. Bourbonnais R, Paice M (1990) Oxidation of non-phenolic substratesAn expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102. doi:10.1016/0014-5793(90)80298-W CrossRefGoogle Scholar
  14. Brock R (2011) USDA approves corn designed for ethanol production. Corn and soybean digestGoogle Scholar
  15. Camacho NA, Aguilar OG (2002) Production, purification, and characterization of a low-molecular-mass xylanase from Aspergillus sp. and its application in baking. Appl Biochem Biotechnol 104:159–171. doi:10.1385/ABAB:104:3:159 CrossRefGoogle Scholar
  16. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238CrossRefGoogle Scholar
  17. Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457. doi:10.1016/j.biortech.2007.01.002 CrossRefGoogle Scholar
  18. Carlson SR, Rudgers GW, Zieler H, Mach JM, Luo S, Grunden E, Krol C, Copenhaver GP, Preuss D (2007) Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet 3:1965–1974. doi:10.1371/journal.pgen.0030179 CrossRefGoogle Scholar
  19. Clough R, Pappu K, Thompson K, Beifuss K, Lane J, Delaney D, Harkey R, Drees C, Howard J, Hood EE (2006) Manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium is enzymatically active and accumulates to high levels in transgenic maize seed. Plant Biotechnol J 4:53–62CrossRefGoogle Scholar
  20. Crabb WD, Mitchinson C (1997) Enzymes involved in the processing of starch to sugars. Trends Biotechnol 15:349–352. doi:10.1016/S0167-7799(97)01082-2 CrossRefGoogle Scholar
  21. Economist (2009) The parable of the sower. The Economist, pp 71–73Google Scholar
  22. Elegir G, Bussini D, Antonsson S, Lindstrom M, Zoia L (2007) Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor. Appl Microbiol Biotechnol 77:809–817CrossRefGoogle Scholar
  23. Fedoroff N (2010) The past, present and future of crop genetic modification. New Biotechnol 27:461–465CrossRefGoogle Scholar
  24. Gray BN, Ahner BA, Hanson MR (2009) High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102:1045–1054CrossRefGoogle Scholar
  25. Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Biochem Biotechnol 59:15–32Google Scholar
  26. Harbak L, Thygesen HV (2002) Safety evaluation of a xylanase expressed in Bacillus subtilis. Food Chem Toxicol 40:1–8CrossRefGoogle Scholar
  27. Hayes TL, Zimmerman N, Hackle A (2007) World enzymes; Industry study 2229, Cleveland, OHGoogle Scholar
  28. Heinzelman P, Snow CD, Smith MA, Yu X, Kannan A, Boulware K, Villalobos A, Govindarajan S, Minshull J, Arnold FH (2009) SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J Biol Chem 284:26229–26233CrossRefGoogle Scholar
  29. Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass volume II — results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory, RichlandCrossRefGoogle Scholar
  30. Hood E, Howard J, Delaney D (2002) Method of Increasing Heterologous Protein Expression in Plants. US patent # 7, 541, 515Google Scholar
  31. Hood E, Howard J (2008) Over-expression of novel proteins in maize. In: Kriz A, Larkins B (eds) Molecular genetic approaches to maize improvement. Springer, Berlin/Heidelberg, pp 91–105Google Scholar
  32. Hood E, Vicuna Requesens D (2011) Recombinant protein production in plants: challenges and solutions. In: Lorence A (ed) Methods in molecular biology: recombinant gene expression. Humana Press, New YorkGoogle Scholar
  33. Hood E, Mr B, Beifuss K, Magallanes-Lundback M, Horn M, Callaway E, Drees C, Delaney D, Clough R, Howard J (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140. doi:10.1046/j.1467-7652.2003.00014.x CrossRefGoogle Scholar
  34. Hood E, Love R, Lane J et al (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719CrossRefGoogle Scholar
  35. Howard JA, Hood E (2005) Bioindustrial and biopharmaceutical products produced in plants. Adv. Agron. 85:91–124CrossRefGoogle Scholar
  36. Howard J, Hood E (2007) Methods for growing nonfood products in transgenic plants. Crop Sci 47:1255. doi:10.2135/cropsci2006.09.0594 CrossRefGoogle Scholar
  37. Howard J, Nikolov Z, Hood E (2011) Enzyme production systems for biomass conversion. In: Hood E, Nelson P, Powell R (eds) Plant biomass conversion. Wiley Press, Ames, pp 227–253CrossRefGoogle Scholar
  38. Hood EE, Devaiah SP, Fake G, Egelkrout E, Teoh K, Vicuna Requesens D, Hayden C, Hood KR, Pappu K, Carroll J and Howard JA (2011) Manipulating corn germplasm to increase recombinant protein accumulation. Plant Biotechnology Journal. Online DOI: 10.1111/j.1467-7652.2011.00627.xGoogle Scholar
  39. Hyunjong B, Lee D-S, Hwang I (2006) Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J Exp Bot 57:161–169. doi:10.1093/jxb/erj019 CrossRefGoogle Scholar
  40. Jamai L, Ettayebi K, El Yamani J, Ettayebi M (2007) Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of alpha-amylase. Bioresour Technol 98:2765–2770. doi:10.1016/j.biortech.2006.09.057 CrossRefGoogle Scholar
  41. Jin R, Richter S, Zhong R, Lamppa GK (2003) Expression and import of an active cellulase from a thermophilic bacterium into the chloroplast both in vitro and in vivo. Plant Mol Biol 51:493–507CrossRefGoogle Scholar
  42. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofpr 1:119–134Google Scholar
  43. Kabir Kazi F, Fortman J, Anex R, Kothandaraman G, Hsu D, Aden A, Dutta A (2010) Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol. Technical Report. NREL/TP-6A2-46588Google Scholar
  44. Kim J, Kavas M, Fouad W, Nong G, Preston J, Altpeter F (2010) Production of heperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuels production. Plant Mol Biol. doi:10.1007/s11103-010-9712-6
  45. Koutinas AA, Wang R, Webb C (2004) Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat. Biotechnol Bioeng 85:524–538CrossRefGoogle Scholar
  46. Krishnan M (2000) Economic analysis of fuel ethanol production from corn starch using fluidized-bed bioreactors. Bioresour Technol 75:99–105. doi:10.1016/S0960-8524(00)00047-X CrossRefGoogle Scholar
  47. Kuan IC, Tien M (1993) Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci USA 90:1242–1246CrossRefGoogle Scholar
  48. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456CrossRefGoogle Scholar
  49. Kumagai M (2000) Rapid, high-level expression of glycosylated rice α-amylase in transfected plants by an RNA viral vector. Gene 245:169–174. doi:10.1016/S0378-1119(00)00015-9 CrossRefGoogle Scholar
  50. Lagrimini LM, Bradford S, Rothstein S (1990) Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 2:7–18. doi:10.1105/tpc.2.1.7 CrossRefGoogle Scholar
  51. Lau OS, Sun SSM (2009) Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv 27:1015–1022. doi:10.1016/j.biotechadv.2009.05.005 CrossRefGoogle Scholar
  52. Leelavathi S, Gupta N, Maiti S, Ghosh A, Reddy VS (2003) Overproduction of an alkali- and thermo-stable xylanase in tobacco chloroplasts and efficient recovery of the enzyme. Mol Breed 11:59–67CrossRefGoogle Scholar
  53. Lehninger AL, Nelson DL, Cox MM (2005) Lehninger principles of biochemistry, vol 1. W.H. Freeman, New YorkGoogle Scholar
  54. Leonowicz A, Cho N, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227. doi:10.1002/1521-4028(200107)41:3/4<185::AID-JOBM185>3.0.CO;2-TCrossRefGoogle Scholar
  55. Li X-L, Skory CD, Ximenes EA, Jordan DB, Dien BS, Hughes SR, Cotta MA (2007) Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. Appl Microbiol Biotechnol 74:1264–1275. doi:10.1007/s00253-006-0787-6 CrossRefGoogle Scholar
  56. Liu J-H, Selinger LB, Cheng K-J, Beauchemin KA, Moloney MM (1997) Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Biochem J 3:463–470Google Scholar
  57. Loera Corral O, Pérez Pérez MCI, Barbosa Rodríguez JR, Villaseñor Ortega F, Guevara-González RG, Torres-Pacheco I (2006) Laccases. In: Ramón Gerardo Guevara-González and Irineo Torres-Pacheco (eds) Advances in Agricultural and Food Biotechnology. Research Signpost, Kerala, India, pp 323–340Google Scholar
  58. Ma JK-C, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805. doi:10.1038/nrg1177 CrossRefGoogle Scholar
  59. Mandavilli S (2000) Performance characteristics of an immobilized enzyme reactor producing ethanol from starch. J Chem Eng Japan 33:886–890CrossRefGoogle Scholar
  60. Mattinen M-L, Suortti T, Gosselink R, Argyropoulos DS, Evtuguin D, Suurnakki A, de Jong E, Tamminen T (2008) Polymerization of different lignins by laccase. BioResources 3:549–565Google Scholar
  61. McElroy D (2003) Sustaining agbiotechnology through lean times. Nat Biotechnol 21:996–1002CrossRefGoogle Scholar
  62. Mei C, Park S-H, Sabzikar R, Callista Ransom CQ, Mariam S (2009) Green tissue-specific production of a microbial endo-cellulase in maize ( Zea mays L.) endoplasmic-reticulum and mitochondria converts cellulose into fermentable sugars. J Chem Technol Biotechnol 84:689–695CrossRefGoogle Scholar
  63. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120Google Scholar
  64. Mitsui T, Itoh K (1997) The alpha-amylase multigene family. Trends Plant Sci 2:255–261CrossRefGoogle Scholar
  65. Moharrery A, Hvelplund T, Weisbjerg MR (2009) Effect of forage type, harvesting time and exogenous enzyme application on degradation characteristics measured using in vitro technique. Anim Feed Sci Technol 153:178–192. doi:10.1016/j.anifeedsci.2009.06.001 CrossRefGoogle Scholar
  66. Mukherjee A, Borah M, Rai S (2009) To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergen. Biochem Eng J 43:149–156. doi:10.1016/j.bej.2008.09.011 CrossRefGoogle Scholar
  67. Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Technical communication: survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microb Biotechnol 14:301–304CrossRefGoogle Scholar
  68. Oraby H, Venkatesh B, Dale B, Ahmad R, Ransom C, Oehmke J, Mariam S (2007) Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16:739–749CrossRefGoogle Scholar
  69. Pandey A, Nigam P, Soccol C, Soccol V, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152CrossRefGoogle Scholar
  70. Patel M, Johnson JS, Brettell RIS, Jacobsen J, G-ping X (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–123CrossRefGoogle Scholar
  71. Pen J, van den Ooyen A, Elzen P, Rietveld K, Hoekema A (1992) Direct screening for high-level expression of an introduced alpha-amylase gene in plants. Plant Mol Biol 18:1133–1139CrossRefGoogle Scholar
  72. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591. doi:10.1007/s00253-005-1904-7 CrossRefGoogle Scholar
  73. Raab RM (2010) Transgenic plants expressing CIVPS or intein modified proteins and related method. US Patent # 20110138502Google Scholar
  74. Rodrigues M, Pinto P, Bezerra R, Dias A, Guedes C, Cardoso V, Cone J, Ferreira L, Colaco J, Sequeira C (2008) Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim Feed Sci Technol 141:326–338. doi:10.1016/j.anifeedsci.2007.06.015 CrossRefGoogle Scholar
  75. Schülein M (2000) Protein engineering of cellulases. Biochim Biophys Acta 1543:239–252CrossRefGoogle Scholar
  76. Senior D, Hamilton J, Taiplus P, Torvinin J (1999) Enzyme use can lower bleaching costs, aid ECF conversions. Pulp and Paper 73(7):59–65Google Scholar
  77. Silveira M, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408CrossRefGoogle Scholar
  78. Smith AM (1999) Making starch. Curr Opin Plant Biol 2:223–229. doi:10.1016/S1369-5266(99)80039-9 CrossRefGoogle Scholar
  79. Sticklen Mb (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443CrossRefGoogle Scholar
  80. Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15. doi:10.1111/j.1467-7652.2006.00216.x CrossRefGoogle Scholar
  81. Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2:707–738Google Scholar
  82. Taylor LE II, Dai Z, Decker SR, Brunecky R, Adney William S, Ding S-Y, Himmel Michael E (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26:413–424CrossRefGoogle Scholar
  83. Urbanchuk JM, Kowalski DJ, Dale BE, Kim S (2009) Corn amylase: improving the efficiency and environmental footprint of corn to ethanol through plant biotechnology. AgBioforum 12:149–154Google Scholar
  84. Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA (2010) LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 76:733–743. doi:10.1128/AEM.01757-09 CrossRefGoogle Scholar
  85. van der Maarel M (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155. doi:10.1016/S0168-1656(01)00407-2 CrossRefGoogle Scholar
  86. Wolt J, Karaman S (2007) Estimated environmental loads of alpha-amylase from transgenic high-amylase maize. Biomass Bioenerg 31:831–835. doi:10.1016/j.biombioe.2007.04.003 CrossRefGoogle Scholar
  87. Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38:123–130CrossRefGoogle Scholar
  88. Yang P, Wang Y, Bai Y, Meng K, Luo H, Yuan T, Fan Y, Yao B (2007) Expression of xylanase with high specific activity from Streptomyces olivaceoviridis A1 in transgenic potato plants (Solanum tuberosum L.). Biotechnol Lett 29:659–667. doi:10.1007/s10529-006-9280-7 CrossRefGoogle Scholar
  89. Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929CrossRefGoogle Scholar
  90. Zhao J, Li X, Qu Y (2006) Application of enzymes in producing bleached pulp from wheat straw. Bioresour Technol 97:1470–1476. doi:10.1016/j.biortech.2005.07.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Arkansas Biosciences InstituteArkansas State University, State UniversityJonesboroUSA

Personalised recommendations