Induction of Oral Tolerance to Treat Autoimmune and Allergic Diseases by Using Transgenic Plants

  • Shengwu Ma
  • Anthony M. Jevnikar


In recent years, the use of plants as a green bioreactor for production of recombinant pharmaceutical proteins, a technology known as plant molecular farming or biofarming, has gained increasing attention. This new technology has the potential to produce large quantities of the required protein at competitive low costs. Moreover, edible tissues or organs offer the possibility of direct oral delivery of pharmaceutical proteins expressed by plants with minimal processing, significantly reducing production costs and accelerating product development. To date, a number of recombinant proteins of pharmaceutical interest have been produced in plants, ranging from monoclonal antibodies, vaccines, hormones to enzymes. Furthermore, many plant-made pharmaceutical proteins have been tested in pre-clinical animal models of disease with promising results, with some plant-made vaccines and monoclonal antibodies advanced to human clinical trials. This chapter highlights the progress made towards the utilization of transgenic plants to express and deliver recombinant autoantigens or allergens to induce oral tolerance for the treatment of autoimmunity and allergy.


Transgenic Plant Transgenic Rice Total Soluble Protein Glutamic Acid Decarboxylase Oral Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arabi YM, Tamim HM, Rishu AH (2009) Hypoglycemia with intensive insulin therapy in critically ill patients: predisposing factors and association with mortality. Crit Care Med 37(9):2536–2544CrossRefGoogle Scholar
  2. Arakawa T, Yu J, Chong DK, Hough J, Engen PC, Langridge WH (1998) A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nat Biotechnol 16(10):934–938CrossRefGoogle Scholar
  3. Asero R, Mistrello G, Roncarolo D, Amato S (2002) Allergenic similarity of 2S albumins. Allergy 57(1):62–63CrossRefGoogle Scholar
  4. Balding J, Livingstone WJ, Conroy J, Mynett-Johnson L, Weir DG, Mahmud N, Smith OP (2004) Inflammatory bowel disease: the role of inflammatory cytokine gene polymorphisms. Mediators Inflamm 13(3):181–187CrossRefGoogle Scholar
  5. Beebe AM, Cua DJ, de Waal MR (2002) The role of interleukin-10 in autoimmune disease: systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Cytokine Growth Factor Rev 13(4–5):403–412CrossRefGoogle Scholar
  6. Bortesi L, Rossato M, Schuster F, Raven N, Stadlmann J, Avesani L, Falorni A, Bazzoni F, Bock R, Schillberg S, Pezzotti M (2009) Viral and murine interleukin-10 are correctly processed and retain their biological activity when produced in tobacco. BMC Biotechnol 9:22CrossRefGoogle Scholar
  7. Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3(7):521–533CrossRefGoogle Scholar
  8. Brandsma ME, Diao H, Wang X, Kohalmi SE, Jevnikar AM, Ma S (2010) Plant-derived recombinant human serum transferrin demonstrates multiple functions. Plant Biotechnol J 8(4):489–505CrossRefGoogle Scholar
  9. Bu DF, Erlander MG, Hitz BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB, Evans GA, Tobin AJ (1992) Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 89(6):2115–2119CrossRefGoogle Scholar
  10. Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol Immunol 332:33–54CrossRefGoogle Scholar
  11. Clark AT, Islam S, King Y, Deighton J, Anagnos- tou K, Ewan PW (2009) Successful oral tolerance induction in severe peanut allergy. Allergy 64(8):1218–1220CrossRefGoogle Scholar
  12. Douthwaite J, Jermutus L (2006) Exploiting directed evolution for the discovery of biologicals. Curr Opin Drug Discov Dev 9(2):269–275Google Scholar
  13. Dove A (2002) Uncorking the biomanufacturing bottleneck. Nat Biotechnol 20(8):777–779CrossRefGoogle Scholar
  14. Eisenbarth GS (2004) Type 1 diabetes: molecular, cellular and clinical immunology. Adv Exp Med Biol 552:306–310Google Scholar
  15. Elliott JF, Qin HY, Bhatti S, Smith DK, Singh RK, Dillon T, Lauzon J, Singh B (1994) Immunization with the larger isoform of mouse glutamic acid decarboxylase (GAD67) prevents autoimmune diabetes in NOD mice. Diabetes 43(12):1494–1499CrossRefGoogle Scholar
  16. Faria AM, Weiner HL (2006) Oral tolerance: therapeutic implications for autoimmune diseases. Clin Dev Immunol 13(2–4):143–157CrossRefGoogle Scholar
  17. Franklin SE, Mayfield SP (2004) Prospects for molecular farming in the green alga Chlamydomonas. Curr Opin Plant Biol 7(2):159–165CrossRefGoogle Scholar
  18. Frossard CP, Steidler L, Eigenmann PA (2007) Oral administration of an IL-10-secreting Lactococcus lactis strain prevents food-induced IgE sensitization. J Allergy Clin Immunol 119(4):952–959CrossRefGoogle Scholar
  19. Hashizume F, Hino S, Kakehashi M, Okajima T, Nadano D, Aoki N, Matsuda T (2008) Development and evaluation of transgenic rice seeds accumulating a type II-collagen tolerogenic peptide. Transgenic Res 17(6):1117–1129CrossRefGoogle Scholar
  20. Huibregtse IL, Snoeck V, de Creus A, Braat H, De Jong EC, Van Deventer SJ, Rottiers P (2007) Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin. Gastroenterology 133(2):517–528CrossRefGoogle Scholar
  21. Ichim TE, Zheng X, Suzuki M, Kubo N, Zhang X, Min LR, Beduhn ME, Riordan NH, Inman RD, Min WP (2008) Antigen-specific therapy of rheumatoid arthritis. Expert Opin Biol Ther 8(2):191–199CrossRefGoogle Scholar
  22. Jasinski JM, Eisenbarth GS (2005) Insulin as a primary autoantigen for type 1A diabetes. Clin Dev Immunol 12(3):181–186CrossRefGoogle Scholar
  23. Kalischuk LD, Buret AG (2010) A role for Campylobacter jejuni-induced enteritis in inflammatory bowel disease? Am J Physiol Gastrointest Liver Physiol 298(1):G1–9CrossRefGoogle Scholar
  24. Koffeman EC, Genovese M, Amox D, Keogh E, Santana E, Matteson EL, Kavanaugh A, Molitor JA, Schiff MH, Posever JO, Bathon JM, Kivitz AJ, Samodal R, Belardi F, Dennehey C, van den Broek T, van Wijk F, Zhang X, Zieseniss P, Le T, Prakken BA, Cutter GC, Albani S (2009) Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum 60(11):3207–3216Google Scholar
  25. Kozuch PL, Hanauer SB (2008) Treatment of inflammatory bowel disease: a review of medical therapy. World J Gastroenterol 14(3):354–377CrossRefGoogle Scholar
  26. Larché M, Wraith DC (2005) Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat Med 11(4 Suppl):S69–S76CrossRefGoogle Scholar
  27. Lee C, Ho H, Lee K, Jeng S, Chiang B (2011) Construction of a Der p2-transgenic plant for the alleviation of airway inflammation. Cell Mol Immunol 8(5):404–414Google Scholar
  28. Ma S, Zhao DL, Yin ZQ, Mukherjee R, Singh B, Qin HY, Stiller CR, Jevnikar AM (1997) Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nat Med 3(7):793–796CrossRefGoogle Scholar
  29. Ma S, Huang Y, Yin Z, Menassa R, Brandle JE, Jevnikar AM (2004) Induction of oral tolerance to prevent diabetes with transgenic plants requires glutamic acid decarboxylase (GAD) and IL-4. Proc Natl Acad Sci USA 101(15):5680–5685CrossRefGoogle Scholar
  30. Massa M, Passalia M, Manzoni SM, Campanelli R, Ciardelli L, Yung GP, Kamphuis S, Pistorio A, Meli V, Sette A, Prakken B, Martini A, Albani S (2007) Differential recognition of heat-shock protein DNAJ-derived epitopes by effector and Treg cells leads to modulation of infl ammation in juvenile idiopathic arthritis. Arthritis Rheum 56(5):1648–1657CrossRefGoogle Scholar
  31. Menassa R, Du C, Yin ZQ, Ma S, Poussier P, Brandle J, Jevnikar AM (2007) Therapeutic effectiveness of orally administered transgenic low-alkaloid tobacco expressing human interleukin-10 in a mouse model of colitis. Plant Biotechnol J 5(1):50–59CrossRefGoogle Scholar
  32. Moghadam-Kia S, Werth VP (2010) Prevention and treatment of systemic glucocorticoid side effects. Int J Dermatol 49(3):239–248CrossRefGoogle Scholar
  33. Morandini F, Avesani L, Bortesi L, Van Droogenbroeck B, De Wilde K, Arcalis E, Bazzoni F, Santi L, Brozzetti A, Falorni A, Stoger E, Depicker A, Pezzotti M (2011) Non-food/feed seeds as biofactories for the high-yield production of recombinant pharmaceuticals. Plant Biotechnol J. doi: 10.1111/j.1467-7652.2011
  34. Niederberger V, Valenta R (2004) Recombinant allergens for immunotherapy. Where do we stand? Curr Opin Allergy Clin Immunol 4(6):549–554CrossRefGoogle Scholar
  35. Park KS, Park MJ, Cho ML, Kwok SK, Ju JH, Ko HJ, Park SH, Kim HY (2009) Type II collagen oral tolerance: mechanism and role in ollagen-induced arthritis and rheumatoid arthritis. Mod Rheumatol 19(6):581–589CrossRefGoogle Scholar
  36. Paul M, Ma JK (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58(1):58–67CrossRefGoogle Scholar
  37. Penney CA, Thomas DR, Deen SS, Walmsley AM (2011) Plant-made vaccines in support of the Millennium Development Goals. Plant Cell Rep 30(5):789–798CrossRefGoogle Scholar
  38. Rasala BA, Mayfield SP (2011) The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng Bugs 2(1):50–54CrossRefGoogle Scholar
  39. Rodríguez-Narciso C, Pérez-Tapia M, Rangel-Cano RM, Silva CL, Meckes-Fisher M, Salgado-Garciglia R, Estrada-Parra S, López-Gómez R, Estrada-García I (2011) Expression of Mycobacterium leprae HSP65 in tobacco and its effectiveness as an oral treatment in adjuvant-induced arthritis. Transgenic Res 20(2):221–229CrossRefGoogle Scholar
  40. Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts – oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5(4):495–510CrossRefGoogle Scholar
  41. Skyler JS (2008) Update on worldwide efforts to prevent type 1 diabetes. Ann N Y Acad Sci 1150:190–196CrossRefGoogle Scholar
  42. Smart V, Foster PS, Rothenberg ME, Higgins TJ, Hogan SP (2003) A plant-based allergy vaccine suppresses experimental asthma via an IFN-gamma and CD4  +  CD45RBlow T cell-dependent mechanism. J Immunol 171(4):2116–2126Google Scholar
  43. Smith AM, Benjamin DC, Hozic N, Derewenda U, Smith WA, Thomas WR, Gafvelin G, van Hage-Hamsten M, Chapman MD (2001) The molecular basis of antigenic cross-reactivity between the group 2 mite allergens. J Allergy Clin Immunol 107(6):977–984CrossRefGoogle Scholar
  44. Sun JB, Czerkinsky C, Holmgren J (2010) Mucosally induced immunological tolerance, regulatory T cells and the adjuvant effect by cholera toxin B subunit. Scand J Immunol 71(1):1–11CrossRefGoogle Scholar
  45. Suzuki K, Kaminuma O, Yang L, Takai T, Mori A, Umezu-Goto M, Ohtomo T, Ohmachi Y, Noda Y, Hirose S, Okumura K, Ogawa H, Takada K, Hirasawa M, Hiroi T, Takaiwa F (2011) Prevention of allergic asthma by vaccination with transgenic rice seed expressing mite allergen: induction of allergen-specific oral tolerance without bystander suppression. Plant Biotechnol J. doi: 10.1111/j.1467-7652.2011
  46. Takagi H, Hiroi T, Yang L, Tada Y, Yuki Y, Takamura K, Ishimitsu R, Kawauchi H, Kiyono H, Takaiwa F (2005) A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proc Natl Acad Sci USA 102(48):17525–17530CrossRefGoogle Scholar
  47. Takagi H et al (2008) Efficient induction of oral tolerance by fusing cholera toxin B subunit with allergen-specific T-cell epitopes accumulated in rice seed. Vaccine 26:6027–6030CrossRefGoogle Scholar
  48. Takaiwa F (2007) A rice-based edible vaccine expressing multiple T-cell epitopes to induce oral tolerance and inhibit allergy. Immunol Allergy Clin North Am 27(1):129–139CrossRefGoogle Scholar
  49. Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221CrossRefGoogle Scholar
  50. Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154CrossRefGoogle Scholar
  51. Verma D, Moghimi B, LoDuca PA, Singh HD, Hoffman BE, Herzog RW, Daniell H (2010) Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proc Natl Acad Sci USA 107(15):7101–7106CrossRefGoogle Scholar
  52. Wang X, Brandsma M, Tremblay R, Maxwell D, Jevnikar AM, Huner N, Ma S (2008) A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol 8:87CrossRefGoogle Scholar
  53. Weiner HL, da Cunha AP, Quintana F, Wu H (2011) Oral tolerance. Immunol Rev 241(1):241–259CrossRefGoogle Scholar
  54. Zhang L, Eisenbarth GS (2011) Prediction and prevention of Type 1 diabetes mellitus. J Diabetes 3(1):48–57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Transplantation Immunology GroupLawson Health Research InstituteLondonCanada
  2. 2.Department of BiologyUniversity of Western OntarioLondonCanada

Personalised recommendations