Lactic Acid Bacteria in Food Industry



Lactic acid bacteria (LAB) are known through ages for their wide ­applications in food, pharmaceutical and chemical industries. But recently LAB have aroused interest for their ability to secrete extracellular polysaccharides or glucans. These glucans have immense commercial value because of their industrially useful physico-chemical properties. The glucans derived from LAB play crucial role in improving rheology, texture, mouth feel of fermented food formulations and conferring beneficial physiological effects on human health, such as antitumour activity, immunomodulating bioactivity and anticarcinogenicity. The modulation of biochemical properties of glucans require a thorough understanding of its biosynthetic pathway and the relation between the structure of glucans and the functional effect provided by them after incorporation into the food matrix. LAB are employed in food industry for making yoghurt, cheese, sourdough bread, sauerkraut, pickles, beer, wine and other fermented foods and animal feeds like silage. LAB can also produce a variety of functional oligosaccharides that have applications as prebiotics, neutraceuticals, sweetners, humectants, drug against colon cancer and as immune stimulator. LAB are gram positive rods or cocci, non spore forming, acid tolerant, low GC containing, anaerobic or micro-aerophilic bacteria characterized by their ability to ferment sugar to lactic acid. The commonly known LAB genera are Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus. Besides prolonging the shelf life, lactic acid enhances the gustatory and nutritional value, imparts appetizing flavour and texture to the food. Some LAB produce proteinaceous antimicrobial compounds called bacteriocins which inhibit the growth of Gram-positive pathogenic and spoilage bacteria and used as food additives. Lactic acid bacteria as probiotics have been proven effective against diarrhoea, irritable bowel disorder, allergies, stimulation of immunity, lactose intolerance.


Lactic acid bacteria Exopolysaccharides Oligosaccharides Bacteriocin Probiotic Polyols 


  1. L. Avonts, E. Van Uytven, L. De Vuyst, Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Int. Dairy J. 14, 947–955 (2004)CrossRefGoogle Scholar
  2. H. Barreteau, C. Delattre, P. Michaud, Production of oligosaccharides as promising new food additive generation. Food Technol. Biotechnol. 44, 323–333 (2006)Google Scholar
  3. C.S. Brennan, C.M. Tudorica, V. Kuri, Soluble and insoluble dietary fibres (non-starch polysaccharides) and their effects on food structure and nutrition. Food Ind. J. 5, 261–272 (2002)Google Scholar
  4. F. Carvalheiro, P.C. Moniz, L.C. Duarte, M.P. Esteves, F.M. Girio, Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J. Ind. Microbiol. Biotechnol. (2010). doi:10.1007/s10295-010-0823-5Google Scholar
  5. Y. Chalfan, R. Levy, R.I. Mateles, Detection of mannitol formation by bacteria. Appl. Microbiol. 30, 476 (1975)PubMedGoogle Scholar
  6. C.H. Chung, D.F. Day, Gluco-oligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic. J. Ind. Microbiol. Biotechnol. 29, 196–199 (2002)PubMedCrossRefGoogle Scholar
  7. G. Cote, J.F. Robyt, Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alterning (1–6), (1–3)-α-D Glucan. Carbohydr. Res. 101, 57–74 (1982)PubMedCrossRefGoogle Scholar
  8. K. Demuth, H.J. Jordening, K. Buchholz, Oligosaccharide synthesis by dextransucrase: New unconventional acceptors. Carbohydr. Res. 337, 1811–1820 (2002)PubMedCrossRefGoogle Scholar
  9. M. Dols-Lafargue, H.Y. Lee, C. Le Marrec, A. Heyraud, G. Chambat, A. Lonvaud-Funel, Characterization of gtf, a glucosyltransferase gene in the genomes of Pediococcus parvulus and Oenococcus oeni. Appl. Environ. Microbiol. 74, 4079–4090 (2008)PubMedCrossRefGoogle Scholar
  10. D. Ercolini, G. Moschetti, G. Blaiotta, S. Coppola, Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis. Curr. Microbiol. 42, 199–202 (2001)PubMedCrossRefGoogle Scholar
  11. A. Galvez, H. Abriouel, R.L. López, N.B. Omar, Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120, 51–70 (2007)PubMedCrossRefGoogle Scholar
  12. A.K. Goulas, D.A. Fisher, G.K. Grimble, A.S. Grandison, R.A. Rastall, Synthesis of isomaltoligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase. Enz. Microb. Technol. 35, 327–338 (2004)CrossRefGoogle Scholar
  13. G.J. Grobben, S.W.P.G. Peters, H.W. Wisselink, R.A. Weusthuis, M.H.N. Hoefnagel, J. Hugenholtz, G. Eggink, Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Appl. Environ. Microbiol. 67, 2867–2870 (2001)PubMedCrossRefGoogle Scholar
  14. W.H. Holzapfel, P. Haberer, R. Geisen, J. Bjorkroth, U. Schillinger, Taxonomy and important features of probiotic microorganisms in food nutrition. Am. J. Clin. Nutr. 73, 365S–373S (2001)PubMedGoogle Scholar
  15. M.H. Hsieh, J. Versalovic, The human microbiome and probiotics: Implications for pediatrics. Curr. Probl. Pediatr. Adolesc. Health Care 38, 309–327 (2008)PubMedCrossRefGoogle Scholar
  16. I. Iliev, T. Vassileva, C. Ignatova, I. Ivanova, T. Haertlé, P. Monsan, J.M. Chobert, ­Gluco-oligosaccharides synthesized by glucosyltransferases from constitutive mutants of Leuconostoc mesenteroides strain Lm28. J. Appl. Microbiol. 104, 243–250 (2008)PubMedGoogle Scholar
  17. V. Kontogiorgos, C.G. Biliaderis, V. Kiosseoglou, G. Doxastakis, Stability and rheology of egg-yolk-stabilized concentrated emulsions containing cereal b-glucans of varying molecular size. Food Hydrocolloids 18, 987–998 (2004)CrossRefGoogle Scholar
  18. M. Korakli, R.F. Vogel, Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesized glycans. Appl. Microbiol. Biotechnol. 71, 790–803 (2006)PubMedCrossRefGoogle Scholar
  19. C. Kubik, B. Sikora, S. Bielecki, Immobilization of dextransucrase and its use with soluble dextranase for glucooligosaccharides synthesis. Enz. Microb. Technol. 34, 555–560 (2004)CrossRefGoogle Scholar
  20. O.P. Kuipers, G. Buist, J. Kok, Current strategies for improving food bacteria. Res. Microbiol. 151, 815–822 (2000)PubMedCrossRefGoogle Scholar
  21. V. Ladero, A. Ramos, A. Wiersma, P. Goffin, A. Schanck, M. Kleerebezem, J. Hugenholtz, E.J. Smid, P. Hols, High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl. Environ. Microbiol. 73, 1864–1872 (2007)PubMedCrossRefGoogle Scholar
  22. T.D. Leathers, Biopolymers, in Polysaccharides I: Polysaccharides from Prokaryotes, ed. by E.J. Vandamme, S. DeBaets, A. Steinbüchel (Wiley-VCH, Weinheim, 2002), pp. 229–321Google Scholar
  23. A. Majumder, A. Goyal, Rheological and gelling properties of a novel glucan from Leuconostoc dextranicum NRRL B-1146. Food Res. Int. 42, 525–528 (2009)CrossRefGoogle Scholar
  24. A. Majumder, A. Singh, A. Goyal, Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohydr. Polym. 75, 150–156 (2009)CrossRefGoogle Scholar
  25. V. Monchois, R.M. Willemot, P. Monsan, Glucansucrases: Mechanism of action and structure -function relationships. FEMS Microb. Rev. 23, 131–151 (1999)Google Scholar
  26. P. Monsan, F. Paul, Enzymatic synthesis of oligosaccharides. FEMS Microbiol. Rev. 16, 187–192 (1995)CrossRefGoogle Scholar
  27. P.F. Monsan, S. Bozonnet, C. Albenne, G. Joulca, R.M. Willemot, M. Remaud-Simeon, Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 11, 675–685 (2001)CrossRefGoogle Scholar
  28. G. Mooser, Glycosidases and glycosyltransferases. Enzymes 20, 187–221 (1992)CrossRefGoogle Scholar
  29. G. Moro, I. Minoli, M. Mosca, S. Fanaro, J. Jelinek, B. Stahl, G. Boehm, Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J. Pediatr. Gastroenterol. Nutr. 34, 291–295 (2002)PubMedCrossRefGoogle Scholar
  30. M. Naessens, A. Cerdobbel, W. Soetaert, E.J. Vandamme, Leuconostoc dextransucrase and dextran: production, properties and applications. J. Chem. Technol. Biotechnol. 80, 845–860 (2005)CrossRefGoogle Scholar
  31. A.R. Neves, A. Ramos, C. Shearman, M.J. Gasson, J.S. Almeida, H. Santos, Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13 C-NMR. Eur. J. Biochem. 267, 3859–3868 (2000)PubMedCrossRefGoogle Scholar
  32. K.K. Nikkila, H. Mervi, L. Matti, P. Airi, Metabollic engineering of Lactobacillus helvicticus CNRZ32 for production of pure, L(+) Lactic acid. Appl. Environ. Microbiol. 66, 3835–3841 (2000)CrossRefGoogle Scholar
  33. L. Nissen, G. Pérez-Martínez, M.J. Yebra, Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS Microbiol. Lett. 249, 177–183 (2005)PubMedCrossRefGoogle Scholar
  34. S. Patel, N. Kasoju, U. Bora, A. Goyal, Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam. Biores. Technol. 101, 6852–6855 (2010)CrossRefGoogle Scholar
  35. M.J. Pucci, B.S. Kunka, Novel dextran produced by Leuconostoc dextranicum NRRL B-18242, United States Patent 4,933,191, 1990Google Scholar
  36. R.K. Purama, A. Goyal, Dextransucrase production by Leuconostoc mesenteroides. Indian J. Microbiol. 2, 89–101 (2005)Google Scholar
  37. R.K. Purama, A. Goyal, Identification, effective purification and functional characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-640. Biores. Technol. 99, 3635–3642 (2008)CrossRefGoogle Scholar
  38. R.K. Purama, P. Goswami, A.T. Khan, A. Goyal, Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr. Polym. 76, 30–35 (2009)CrossRefGoogle Scholar
  39. B. Ray, Bacteriocins of starter culture bacteria as food biopreservative, in Food Biopreservatives of Microbial Origin, ed. by B. Ray, M. Daeschel, vol. 8 (CRC Press, Florida, 1992), pp. 177–205Google Scholar
  40. J.M. Rodríguez, M.I. Martínez, J. Kok, Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 42, 91–121 (2002)PubMedCrossRefGoogle Scholar
  41. S. Roller, I.C.M. Dea, Biotechnology in the production and modification of biopolymers for foods. Crit. Rev. Biotechnol. 12(3), 261 (1992)CrossRefGoogle Scholar
  42. M. Saarela, Lahteenaki, R. Crittenden, S. Salminen, T. Mattila-Sandholm, Gut bacteria and health foods – The European perspective. Int. J. Food Microbol. 78, 99–117 (2002)CrossRefGoogle Scholar
  43. B.C. Saha, L.K. Nakamura, Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol. Bioeng. 82, 864–871 (2003)PubMedCrossRefGoogle Scholar
  44. J. Schrezenmeir, M. de Vrese, Probiotics, prebiotics, and synbiotics – Approaching a definition. Am. J. Clin. Nutr. 73, 361S–364S (2001)PubMedGoogle Scholar
  45. F.R. Seymour, R.D. Knapp, Structural analysis of dextrans from strains of Leuconostoc and related genera, that contain 3-O-a glucosylated-D-glucopyranosyl residues at the branched points or in consecutive linear position. Carbohydr. Res. 81, 105–129 (1980)CrossRefGoogle Scholar
  46. E.L. Sing, Culture of Sour Dough Bacteria, United States Patent 4,021,581 (1977)Google Scholar
  47. M.R. Smiricky-Tjardes, C.M. Grieshop, E.A. Flickinger, L.L. Bauer, G.C. Fahey Jr., Dietary galactooligosaccharides affect ileal and total-tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentative characteristics of growing pigs. J. Anim. Sci. 81, 2535–2545 (2003)PubMedGoogle Scholar
  48. A. Sodegard, Preparation of poly (L-lactide-graft-acrylic acid) by pre-irradiation grafting. Polymer Preparation 39, 215–216 (1998)Google Scholar
  49. I.W. Sutherland, Novel and established applications of bacterial polysaccharides. Trends Biotechnol. 16, 41–46 (1998)PubMedCrossRefGoogle Scholar
  50. D. Twomey, R.P. Ross, M. Ryan, B. Meaney, C. Hill, Lantibiotics produced by lactic acid bacteria: Structure, function and applications. Antonie Van Leeuwenhoek 82, 165–185 (2002)PubMedCrossRefGoogle Scholar
  51. S. Uzochukwu, E. Balogh, R.T. Loefler, P.O. Ngoddy, Structural analysis by13C nuclear magnetic resonance spectroscopy of glucan extracted from natural palm wine. Food Chem. 76, 287–291 (2002)CrossRefGoogle Scholar
  52. A.D. Welman, I.S. Maddox, Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol. 21, 269–274 (2003)PubMedCrossRefGoogle Scholar
  53. M.L. Werning, I. Ibarburu, M.T. Dueñas, A. Irastorza, J. Navas, P. López, Pediococcus parvulus gtf gene encoding the GTF glycosyltransferase and its application for specific PCR detection of D-glucan-producing bacteria in foods and beverages. J. Food Prot. 69, 161–169 (2006)PubMedGoogle Scholar
  54. M.L. Werning, M.A. Corrales, A. Prieto, P. Fernandez de Palencia, J. Navas, P. López, Heterologous expression of a 2-substituted-(1,3)-D-glucan in Lactococcus lactis. Appl. Environ. Microbiol. 74, 5259–5262 (2008)PubMedCrossRefGoogle Scholar
  55. J.W. Yun, D.H. Kim, A comparative study of mannitol production by two lactic acid bacteria. J. Ferm. Bioeng. 85, 203–208 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations