Skip to main content

Forest Structure and Diversity

  • Chapter
  • First Online:

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 23))

Abstract

This contribution presents methods that can be used to describe and analyse forest structure and diversity with particular reference to CCF management. Despite advances in remote sensing, mapped tree data in large observation windows are very rarely available in CCF management situations. Thus, although we present methods of second order statistics (SOC), the emphasis is on nearest neighbor statistics (NNS). The first section gives a general introduction and lists the objectives of the chapter. Methods of analysing non-spatial structure and diversity are presented in the second section. The third section introduces procedures for analysing unmarked and marked patterns of forest structure and diversity. Relevant R codes are provided to facilitate application of the methods. Examples of measuring differences between patterns and of reconstructing forests from samples are also presented. Finally, in Sect. 4 we discuss some important issues and summarize the main findings of this chapter.

Author contributions Lead author, text and calculations (unless indicated otherwise); co-authors, design of the chapter and contribution to data sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A total enumeration would be a fairly hopeless endeavour. For example, in a forest containing 47 trees (with 20 trees of species 1, 15 of species 2 and 12 of species 3), there are

    $$ \left( \begin{array}{l} 47 \\ 20 \end{array} \right)*\left( \begin{array}{l} 27 \\ 15 \end{array} \right)*\left( \begin{array}{l} 12 \\ 12 \end{array} \right) = 1.697*{10^{{20}}} $$

    different ways in which the species can be assigned to the available positions.

References

  • Abetz P (1976) Kann und soll die Standraumregulierung in Fichtenbeständen programmiert werden? Forst und Holz 31:117–119

    Google Scholar 

  • Albert M (1999) Analyse der eingriffsbedingten Strukturveränderung und Durchforstungsmodellierung in Mischbeständen. Dissertation Universität Göttingen, Hainholz Verlag, 201 p

    Google Scholar 

  • Albert M (2001) Predicting the selection of elite trees in mixed- species stands – a rule-based algorithm for silvicultural decision support systems. Allgemeine Forst und Jagd Zeitung 173(9):153–161

    Google Scholar 

  • AssunÇÃO R (1994) Testing spatial randomness by means of angles. Biometrics 50:513–537

    Google Scholar 

  • Barkman JJ (1989) A critical evaluation of minimum area concept. Vegetatio 85:89–104

    Google Scholar 

  • Besag J (1977) Contribution to the discussion of Dr Ripley’s paper. J R Stat Soc Ser B 39:193–195

    Google Scholar 

  • Besag JE, Glaves JT (1973) On the detection of spatial pattern in plant communities. Bull Int Stat Inst 45:153–158

    Google Scholar 

  • Biber P (1997) Analyse verschiedener Strukturaspekte von Waldbeständen mit dem Wachstumssimulator SILVA 2. Vortrag anläßlich der Jahrestagung 1997 der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten. Tagungsbericht, pp 100–120

    Google Scholar 

  • Borggreve B (1891) Die Holzzucht [Growing Timber]. Berlin

    Google Scholar 

  • Buys MH, Maritz JS, Boucher C, Van Der Walt JJA (1994) A model for species-area relationships in plant communities. J Veg Sci 5:63–66

    Google Scholar 

  • Byth K, Ripley BD (1980) On sampling spatial patterns by distance methods. Biometrics 36:279–284

    Google Scholar 

  • Chung D-J (1996) Konkurrenzverhältnisse und Struktur natürlicher Pinus densiflora – Quercus variabilis – Mischwälder in Korea. Diss., Fak. f. Forstw. u. Waldökologie, Universität Göttingen

    Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Google Scholar 

  • Condés S (1997) Simulación de parcelas arboladas con datos del 2 Inventario Forestal Nacional. Tesis Doctoral. Tesis Doctoral Escuela Técnica Superior de Ingenieros de Montes de Madrid, 616 pp

    Google Scholar 

  • Condit R, Pitman N, Leigh EG Jr, Chave J, Terborgh J, Foster RB (2002) Beta-diversity in tropical forest trees. Science 295(5555):666–669

    PubMed  CAS  Google Scholar 

  • Corral-Rivas JJ, Wehenkel C, Castellanos BH, Vargas LB, Diéguez-Aranda U (2010) A permutation test of spatial randomness: application to nearest neighbour indices in forest stands. J Forest Res 15:218–225

    CAS  Google Scholar 

  • de Caprariis P, Lindemann RH, Collins CM (1976) A method for determining optimum sample size in species diversity studies. Math Geol 8(5):575–581

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. http://www.R-project.org

  • Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Arnold, London, 159 p

    Google Scholar 

  • Diggle PJ, Besag JE, Glaves JT (1976) Statistical analysis of spatial point patterns by means of distance methods. Biometrics 32:659–667

    Google Scholar 

  • Dixon PM (2002) Ripley's K Function. John Wiley & Sons, Ltd: 342 p

    Google Scholar 

  • Donnelly KP (1978) Simulations to determine the variance and edge effect of total nearest-neighbour distance. In: Hodder I (ed) Simulation methods in Archaeology. Cambridge University Press, London, pp 91–95

    Google Scholar 

  • Eyre FH (1980) Forest cover types of the US and Canada. Society of American Foresters, Washington, DC

    Google Scholar 

  • Ferris R, Humphrey JW (1999) A review of potential biodiversity indicators for application in British forests. Forestry 72(4):313–328

    Google Scholar 

  • Fisher RA, Corbet SA, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58

    Google Scholar 

  • Franklin JF, Spies TA, Van Pelt R, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen JQ (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecol Manage 155(1–3):399–423

    Google Scholar 

  • Füldner K (1995) Strukturbeschreibung von Buchen-Edellaubholz-Mischwäldern. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Füldner K, Gadow Kv (1994) How to define a thinning in a mixed deciduous beech forest. Proceedings of the IUFRO conference: mixed stands – research plots, measurements and results, models, Lousa, Portugal, pp 31–42

    Google Scholar 

  • Gadow Kv, Hui GY (2002) Characterizing forest spatial structure and diversity. Proceedings of the Sustainable Forestry in Southern Sweden (SUFOR) conference “Sustainable Forestry in Temperate Regions”, Lund, April 7–9

    Google Scholar 

  • Gadow Kv (1993) Zur Bestandesbeschreibung in der Forsteinrichtung. Forst und Holz 48(21):602–606

    Google Scholar 

  • Gadow Kv (1999) Waldstruktur und Diversität. Allgemeine Forst und Jagdzeitung 170(7):117–122

    Google Scholar 

  • Gadow Kv, Hui GY (2007) Can the tree species-area relationship be derived from prior knowledge of the tree species richness? Forest Stud/Metsanduslikud Uurimused 46:13–22

    Google Scholar 

  • Gadow Kv, Schmidt M (1998) Periodische Inventuren und Eingriffsinventuren. Forst und Holz 53(22):667–671

    Google Scholar 

  • Gadow Kv, Hui GY, Albert M (1998) Das Winkelmass – ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Centralblatt für das Gesamte Forstwesen 115:1–10

    Google Scholar 

  • Ganeshaiah KN, Shaanker UR (2000) Measuring biological heterogeneity of forest vegetation types: avalanche index as an estimate of biological diversity. Biodiver Conserv 9:953–963

    Google Scholar 

  • Ganeshaiah KN, Shaanker UR (2003) A decade of diversity. University of Agricultural Sciences Bangalore/India. Internal report, 100 p

    Google Scholar 

  • Gitay H, Rexburg SH, Wilson JB (1991) Species-area relation in a New Zealand tussock grassland, with implications for nature reserve design and for community structure. J Veg Sci 2:113–118

    Google Scholar 

  • Gleichmar W, Gerold D (1998) Indizes zur Charakterisierung der horizontalen Baumverteilung. Forstwissenschaftliches Centralblatt 117:69–80

    Google Scholar 

  • Harmon ME, Franklin JF, Swanson F, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. In: MacFadey A, Ford ED (eds) Advances in ecological research, vol 15, pp 133–302

    Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London

    Google Scholar 

  • Hartung J (1985) Statistik. Lehr- und Handbuch der angewandten Statistik. R. Oldenbourg Verlag, München Wien, 806 p

    Google Scholar 

  • Hasenauer H, Leitgeb E, Sterba H (1996) Der A-Wert nach Johann als Konkurrenzindex für die Abschätzung von Durchforstungseffekten. Allgemeine Forst und Jagdzeitung 167:169–174

    Google Scholar 

  • Heck CR (1904) Freie Durchforstung. Springer, Berlin

    Google Scholar 

  • Hessenmöller D (2002) Modelle zur Wachstums- und Durchforstungssimulation im Göttinger Kalkbuchenwald. Doctoral Disserttion, University of Göttingen, 134 p

    Google Scholar 

  • Hessenmöller D, Gadow Kv (2001) Beschreibung der Durchmesserverteilung von Buchenbeständen mit Hilfe der bimodalen Weibullfunktion. Allgemeine Forst und Jagdzeitung 172(3):46–50

    Google Scholar 

  • Hines WGS, Hines RJO (1979) The Eberhardt index and the detection of nonrandomness of spatial point distributions. Biometrika 66:73–80

    Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol Biogeogr 15:1–7

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton/Oxford, 375 p

    Google Scholar 

  • Hui GY, Albert M (2004) Stichprobensimulationen zur Schätzung nachbarschaftsbezogener Strukturparameter in Waldbeständen. Allgemeine Forst und Jagdzeitung 175(10):199–209

    Google Scholar 

  • Hui GY, Gadow Kv (2002) Das Winkelmass – Herleitung des optimalen Standardwinkels. Allgemeine Forst und Jagdzeitung 173(10):173–177

    Google Scholar 

  • Hui GY, Albert M, Gadow Kv (1998) Das Umgebungsmaß als Parameter zur Nachbildung von Bestandesstrukturen. Forstwissenschaftliches Centralblatt 117:258–266

    Google Scholar 

  • Hui GY, Albert M, Chen BW (2003) Reproduktion der Baumverteilung im Bestand unter Verwendung des Strukturparameters Winkelmaß. Allgemeine Forst und Jagdzeitung 174:109–116

    Google Scholar 

  • Hui GY, Gadow Kv, Hu YB, Xu H (2007) Structure-based forest management. China Forestry Publishing House, Beijing, 200 pp (in Chinese, with English abstract)

    Google Scholar 

  • Hui GY, Zhao XH, Zhao ZH, Gadow Kv (2011) Evaluating tree species spatial diversity based on neighborhood relationships. Forest Science 57(4):292–300 http://www.safnet.org/publications/forscience/index.cfm

    Google Scholar 

  • Please update page numbers in Reference “Hyytiäinen and Haigth (2011).” Hyytiäinen K, Haigth RG (2011) Optimizing continuous cover forest management. In: Pukkala T, Gadow von K (eds) Economics of continuous cover forestry. Springer, Dordrecht, pp XXX

    Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester, 534 p

    Google Scholar 

  • Jaehne S, Dohrenbusch A (1997) Ein Verfahren zur Beurteilung der Destandesdivertität. Summary: a method to evaluate forest stand diversity. Forstwissenshaftliches Centralblatt 116:333–345

    Google Scholar 

  • Jenssen M, Hofmann G (2002) Die Quantifizierung ökologischer Potentiale der Phytodiversität und Selbstorganisation der Wälder. Beiträge zur Forstwirtschaft und Landschaftsökolgie 37, pp 18–27

    Google Scholar 

  • Johann K (1982) Der„ A-Wert – “ein objektiver Parameter zur Bestimmung der Freistellungsstärke von Zentralbäumen. [The “A-thinning index” – an objective parameter for the determination of release intensity of frame trees]. Tagungsbericht der Jahrestagung 1982 der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten in Weibersbrunn, pp 146–158

    Google Scholar 

  • Kangas A, Maltamo M (2002) Anticipating the variance of predicted stand volume and timber assortments with respect to stand characteristics and field measurements. Silva Fennica 36(4):799–811

    Google Scholar 

  • Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316(5833):1866–1869

    PubMed  CAS  Google Scholar 

  • Kato F, Mülder D (1983) Qualitative Gruppendurchforstung der Buche. Allgemeine Forst und Jagdzeitung 154:139–145

    Google Scholar 

  • Kinnunen J, Maltamo M, Päivinen R (2007) Standing volume estimates of forests in Russia: how accurate is the published data. Forestry 80(1):53–64

    Google Scholar 

  • Kint V, Meirvenne MV, Nachtergale L, Geuden G, Lust N (2003) Spatial methods for quantifying forest stand structure development: A comparison between nearest- neighbour indices and variogram analysis. Forest Sci 49(1):36–49

    Google Scholar 

  • Kint V, Marc Mv, Lieven N, Guy G, Noel L (2004) Spatial methods for quantifying forest stand structure development: A comparison between nearest-neighbor indices and variogram analysis. Forest Sci 49(1):36–49

    Google Scholar 

  • Kiviste A, Laarmann D, Hordo M, Sims A (2007) Factors influencing tree mortality on the basis of permanent forest sample plot data. Paper presented at the International Workshop on disturbance regimes in a changing environment, 03–06 October 2007 in Tukums, Latvia

    Google Scholar 

  • Kleinn Ch, Ståhl G, Fehrmann L, Kangas A (2010) Issues in forest inventories as an input to planning and decision processes. Allgemeine Forst und Jagdzeitung 181(11/12):205–210

    Google Scholar 

  • Knoebel BR, Burkhart HE (1991) A bivariate distribution approach to modelling forest diameter distributions at two points of time. Biometrics 47:241–253

    Google Scholar 

  • Knoke T, Seifert T (2008) Integrating selected ecological effects of mixed European beech–Norway spruce stands in bioeconomic modelling. Ecol Model 210:487–498

    Google Scholar 

  • Koop H (1981) Vegetatiesstructuur en dynamiek van twee natuurlijke bossen: het Neuenburger en Hasbrucher Urwald, Verslagen van landbouwkundige onderzoekingen 904 PUDOW Wageningen

    Google Scholar 

  • Koop H (1989) Forest dynamics. Springer, New York

    Google Scholar 

  • Korpel S (1992) Ergebnisse der Urwaldforschung für die Waldwirtschaft im Buchen-Ökosystem. Allgemeine Forstzeitschrift 47(21):1148–1152

    Google Scholar 

  • Kramer H (1988) Waldwachstumslehre. Paul Parey, Hamburg

    Google Scholar 

  • Kramer H, Akça A (1995) Leitfaden zur Waldmesslehre. Sauerländer, JD, Frankfurt a. Main, p 298

    Google Scholar 

  • Krebs ChJ (1999) Ecological methodology, 2nd edn. Addison Wesley Longman, Inc, Menlo Park, 620 p

    Google Scholar 

  • Lappi J (1997) A longitudinal analysis of height/diameter curves. Forest Sci 43(4):555–570

    Google Scholar 

  • Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97:616–628

    Google Scholar 

  • Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Google Scholar 

  • Leibundgut H (1978) Die Waldpflege. Paul Haupt, Bern und Stuttgart

    Google Scholar 

  • Leisch F (2004) FlexMix: a general framework for finite mixture models and latent class regression in R. J Stat Softw 11(8). http://www.jstatsoft.org/v11/i08/

  • Lepě J, Stursa J (1989) Species-area curve, life history strategies, and succession: a field test of relationships. Vegetatio 83:249–257

    Google Scholar 

  • Lewandowski A, Pommerening A (1997) Zur Beschreibung der Waldstruktur – Erwartete und beobachtete Artendurchmischung. Forstwissenschaftliches Centralblatt 116:129–139

    Google Scholar 

  • Lewandowski A, Gadow Kv (1997) Ein heuristischer Ansatz zur Reproduk- tion von Waldbesta ̈nden [A heuristic method for reproducing forest stands]. Allgemeine Forst und Jagdzeitung 168:170–174

    Google Scholar 

  • Liu C, Zhang L, Davis CJ, Solomon DS, Gove JH (2002) A finite mixture model for characterizing the diameter distributions of mixed-species forest stands. Forest Sci 48(4):653–661

    Google Scholar 

  • Lotwick HW, Silverman BW (1982) Methods for analysing spatial processes of several types of points. J R Stat Soc Ser B 44:406–413

    Google Scholar 

  • Luhmann N (1995) Social systems. Stanford University Press, Stanford

    Google Scholar 

  • Maguire DA, Mainwaring D, Halpern CB (2006) Stand dynamics after variable retention harvesting in mature Douglas-fir forests of western North America. Allgemeine Forst und Jagdzeitung 177:120–131

    Google Scholar 

  • Margalef R (1957) Information theory in ecology. Genet Syst 3:36–71

    Google Scholar 

  • Mason B, Kerr G, Pommerening A, Edwards C, Hale S, Ireland D, Moore R (2005) Continuous cover forestry in British conifer forests. In: Forest Research (2005). Annual report and accounts 2003–2004, United Kingdom, pp 38–53

    Google Scholar 

  • May RM (1975) Patterns of species abundance and diversity. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap Harvard University, Cambridge, pp 81–120

    Google Scholar 

  • McComb WC, Spies TA, Emmingham WH (1993) Douglas-fir forests: managing for timber and mature forest habitat. J Forest 91(12):31–42

    Google Scholar 

  • McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: Its definition and measurement. Forest Ecol Manage 218:1–24

    Google Scholar 

  • Mehtätalo L (2004) A longitudinal height-diameter model for Norway spruce in Finland. Can J Forest Res 34:131–140

    Google Scholar 

  • Mitscherlich G, Ganssen R (1951) Die Ergebnisse zweier Buchendurchforstungsversuche in höheren Lagen des Schwarzwaldes. Allgemeine Forst und Jagdzeitung 123:1–15

    Google Scholar 

  • Moeur M (1993) Crown width and foliage weight of northern Rocky Mountain conifers, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, Research Paper INT-283, p 14

    Google Scholar 

  • Møller J, Waagepetersen RP (2007) Modern statistics for spatial point processes. Scand J Stat 34:643–684

    Google Scholar 

  • Monod J (1950) La technique de culture continue, the´orie et applications. Annales de l’Institut Pasteur 79:390–410

    CAS  Google Scholar 

  • Motz K, Sterba H, Pommerening A (2010) Sampling measures of tree diversity. Forest Ecol Manage 260:1985–1996

    Google Scholar 

  • Murray DM, Gadow K (1993) A flexible yield model for regional timber forecasting. Southern J Appl Forest 17(2):112–115

    Google Scholar 

  • Nothdurft A, Saborowski J, Nuske RS, Stoyan D (2010) Density estimation based on k-tree sampling and point pattern reconstruction. Can J Forest Res 40:953–967

    Google Scholar 

  • Nyland RD (2002) Silviculture – concepts and applications, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • O’Hara KL, Gersonde RF (2004) Stocking control concepts in uneven-aged silviculture. Forestry 77(2):131–143

    Google Scholar 

  • Penttinen A, Stoyan D, Henttonen HM (1992) Marked point process in forest statistics. Forest Sci 38:806–824

    Google Scholar 

  • Pielou EC (1961) Segregation and symmetry in two-species populations as studied by nearest-neighbour relations. J Ecol 49:255–269

    Google Scholar 

  • Pommerening A (1997) Eine Analyse neuer Ansätze zur Bestandesinventur in strukturreichen Wäldern [An analysis of new approaches towards stand inventory in structure-rich forests]. PhD dissertation, Faculty of Forestry and Forest Ecology, University of Göttingen, Cuvillier Verlag Göttingen, 187 pp

    Google Scholar 

  • Pommerening A (2002) Approaches to quantifying forest structures. Forestry 75:305–324

    Google Scholar 

  • Pommerening A (2006) Evaluating structural indices by reversing forest structural analysis. Forest Ecol Manage 224:266–277

    Google Scholar 

  • Pommerening A (2008) Analysing and modelling spatial woodland structure. Habilitationsschrift (DSc dissertation), University of Natural Resources and Applied Life Sciences, Vienna, Austria

    Google Scholar 

  • Pommerening A, Stoyan D (2006) Edge-correction needs in estimating indices of spatial forest structure. Can J Forest Res 36:1723–1739

    Google Scholar 

  • Pommerening A, Stoyan D (2008) Reconstructing spatial tree point patterns from nearest neighbour summary statistics measured in small subwindows. Can J Forest Res 38:1110–1122

    Google Scholar 

  • Preston FW (1962) The canonical distribution of commonness and rarity: Part I. Ecology 43:185–215

    Google Scholar 

  • Pretzsch H (1995) Perspektiven einer modellorientierten Waldwachstumsforschung. Forstwissenschaftliches Centralblatt 114:188–209

    Google Scholar 

  • Pretzsch H (1997) Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-Larch stands in Lower Saxony. Forest Ecol Manage 97:237–253

    Google Scholar 

  • Pretzsch H (2002) Grundlagen der Waldwachstumsforschung. [The priciples of forest growth science.]. Parey Buchverlag, Berlin

    Google Scholar 

  • Pretzsch H (2003) Diversität und Produktivität von Wäldern (Diversity and Productivity of Forests). Allgemeine Forst und Jagdzeitung 174(5/6):88–97

    Google Scholar 

  • PRODAN, M (1966) Forest Biometrics. Oxford: Pergamon Press, 447 p

    Google Scholar 

  • Pullan W, Bhadeshia H (eds) (2000) Structure in science and art. Cambridge University Press, Cambridge

    Google Scholar 

  • Puumalainen (1996) Die Beta-Funktion und ihre analytische Parameterbestimmung für die Darstellung von Durchmesserverteilungen. Georg-August-Universität Göttingen. Working Paper 15–96

    Google Scholar 

  • Puumalainen J (1998) Optimal cross-cutting and sensitivity analysis for various log dimension constrains by using dynamic programming approach. Scandinavian J Forest Res 13:74–82

    Google Scholar 

  • Puumalainen J, Gadow Kv, Korhonen K (1998) Flexible Ergebnisberechnung einer Eingriffsinventur. [Flexible calculation of a thinning inventory]. Forstarchiv 69:145–150

    Google Scholar 

  • Reininger H (1987) Zielstärken-Nutzung oder die Plenterung des Altersklassenwaldes. Österreichischer Agrarverlag, Wien

    Google Scholar 

  • Richter J (1994) Neue Aspekte der Fichtendurchforstung. Allgemeine Forst und Jagdzeitung 49(12):632–637

    Google Scholar 

  • Ripley BD (1977) Modelling spatial patterns (with discussion). J R Stat Soc Ser B 39:172–212

    Google Scholar 

  • Ruggiero LF, Jones LC, Aubry KB (1991) Plant and animal habitats associations in Douglas-fir forests of the Pacific Northwest: an overview. In: Ruggiero LF, Aubry KB, Carey AB, Huff HM (tecn cords) Wildlife and vegetation of unmanage Douglas-fir forest. USDA Forest Service, GTR-PNW-285, pp 447–462

    Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA, Redfrod KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904

    Google Scholar 

  • Schädelin W (1942) Die Auslesedurchforstung als Erziehungsbetrieb höchster Wertleistung, 3rd edn, Bern

    Google Scholar 

  • Schmidt M, Kiviste A, Gadow Kv (2011) A spatially explicit height-diameter model for Scots Pine in Estonia. Eur J Forest Res. doi:10.1007/s10342-010-0434-8

  • Schober R (1991) Eclaircies par le haut et arbres d’avenir. Revue Forestière XLIII:385–401

    Google Scholar 

  • Scholes RJ, Biggs R (2005) A biodiversity intactness index. Nature 434(3):45–49

    PubMed  CAS  Google Scholar 

  • Schreuder HT, Gregoire TG, Wood GB (1993) Sampling methods for multiresource forest inventory. Wiley, New York, 446 p

    Google Scholar 

  • Schröder J (1998) Beschreibung von Bestandesstrukturen im Knysna-Wald, Südafrika. Diploma thesis, Faculty of Forestry, University Göttingen, 37 p

    Google Scholar 

  • Schütz J-Ph (1989) Der Plenterbetrieb. Lecture Notes Waldbau III, ETH Zürich, p 54

    Google Scholar 

  • Schütz J-P (2002) Silvicultural tools to develop irregular and diverse forest structures. Forestry 75:329–338

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shimatani K, Kubota Y (2004) Quantitative assessment of multispecies spatial pattern with high species diversity. Ecol Res 19:149–163

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Google Scholar 

  • Smaltschinski Th (1998) Charakterisierung von Baumverteilungen. Forstwissenschaftliches Centralblatt 117:355–361

    Google Scholar 

  • Spanos KA, Feest A (2007) A review of the assessment of biodiversity in forest ecosystems. Manage Environ Qual 18(4):475–486

    Google Scholar 

  • Spies TA (1997) Forest stand structure, composition, and function. In: Creating a forestry for the 21st century: the science of ecosystem management. Oxford University Press

    Google Scholar 

  • Staudhammer CL, LeMay VM (2001) Introduction and evaluation of possible indices of stand structural diversity. Can J Forest Res 31:1105–1115

    Google Scholar 

  • Staupendahl K, Puumalainen J (2000) Modellierung des Einflusses von Durchforstungen auf die Durchmesserverteilung von gleichaltrigen Fichtenreibeständen. Forstwissenschaftliches Centralblatt 116(4):249–262

    Google Scholar 

  • Staupendahl K, Gadow Kv (2008) Eingriffsinventuren und Dynamisches Betriebswerk – Instrumente der Operativen Planung im Forstbetrieb. Forstarchiv 79:16–27

    Google Scholar 

  • Staupendahl K, Zucchini W (2006) Estimating the spatial distribution in forest stands by counting small angles between nearest neighbours. Allgemeine Forst und Jagdzeitung 177(8/9):160–168

    Google Scholar 

  • Sterba H (1981) Natürlicher Bestockungsgrad und Reinecke’s SDI. Centralblatt für das gesamte Forstwesen 98(2):101–116

    Google Scholar 

  • Sterba H, Zingg A (2006) Abstandsabhängige und abstandsunabhängige Bestandesstrukturbeschreibung. Allgemeine Forst und Jagdzeitung 177(8/9):169–176

    Google Scholar 

  • Stöcker G (2002) Analyse und Vergleich von Bestandesstrukturen naturnaher Fichtenwälder mit Lorenz-Funktionen und Gini-Koeffizienten. Centralblatt für das gesamte Forstwesen 119: 12–39

    Google Scholar 

  • Stoyan D, Penttinen A (2000) Recent applications of point process methods in forestry statistics. Stat Sci 15:61–78

    Google Scholar 

  • Stoyan D, Stoyan S (1994) Fractals, random shapes and point fields. In: Methods of geometrical statistics, Wiley, Chichester, UK, 394 p

    Google Scholar 

  • Suzuki SN, Kachi N, Suzuki J-I (2008) Development of a local size-hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function. Ann Bot 102:435–441

    PubMed  Google Scholar 

  • Temesgen H, Gadow Kv (2003) Generalized height-diameter models–an application for major tree species in complex stands of interior British Columbia. Eur J Forest Res 123(1):45–51

    Google Scholar 

  • Tjørve E (2003) Shapes and functions of species-area curves: a review of possible models. J Biogeogr 30:827–835

    Google Scholar 

  • Torquato S (2002) Random heterogeneous materials. Microstructure and macroscopic properties. Interdisciplinary applied mathematics 16. Springer, New York

    Google Scholar 

  • Torres RJM (2000) Sostenibiladad del volumen de cosecha calculado con el método de ordenación de montes. Madera y Bosques 6(2):57–72

    Google Scholar 

  • Upton G, Fingleton B (1989) Spatial data analysis by example, vol 2: categorical and directional data. Wiley, Chichester, 416 p

    Google Scholar 

  • Upton G, Fingleton B (1990) Spatial data analysis by example, vol 1: point pattern and quantitative data, 2nd edn. Wiley, Chichester, 410 p

    Google Scholar 

  • Van Laar A, Akça A (2007) Forest mensuration. Springer, Dordrecht, 418 p

    Google Scholar 

  • Wehenkel C, Corral-Rivas JJ, Hernandez-Díaz JC, Gadow Kv (2011) Estimating Balanced Structure Areas in multi-species forests on the Sierra Madre Occidental, Mexico. Ann Forest Sci 68. doi:10.1007/s13595-011-0027-9

  • Wenk G (1996) Durchmesserverteilungen im Buchenplenterwald. Tagungsband des Deutschen Verbandes Forstlicher Versuchsanstalten. Sektion Ertragskunde, Mai 1996 in Neresheim

    Google Scholar 

  • Westphal C, Tremer N, v Oheimb G, Hansen J, Gadow Kv, Härdtle W (2006) Is the reverse J-shaped diameter distribution universally applicable in European virgin beech forests? Forest Ecol Manage 223:75–83

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Int Assoc Plant Taxon 21:213–251

    Google Scholar 

  • Williams CB (1964) Patterns in the balance of nature. Academic, London

    Google Scholar 

  • Williams MR (1995) An extreme-value function model of the species incidence and species-area relationship. Ecology 76:2607–2616

    Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton, p 391

    Google Scholar 

  • Xia FC (2007) Study on the plant biodiversity and spatial patterns of broad-leaved Korean Pine forest in Changbai Mountain. Doctoral dissertation, Beijing Forestry University, Beijing

    Google Scholar 

  • Zucchini W, Schmidt M, Gadow Kv (2001) A model for the diameter-height distribution in an uneven-aged beech forest and a method to assess the fit of such models. Silva Fennica 35(2):168–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus v. Gadow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gadow, K.v. et al. (2012). Forest Structure and Diversity. In: Pukkala, T., von Gadow, K. (eds) Continuous Cover Forestry. Managing Forest Ecosystems, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2202-6_2

Download citation

Publish with us

Policies and ethics