Advertisement

Historical Emergence and Current Application of CCF

  • Jean-Philippe SchützEmail author
  • Timo Pukkala
  • Pablo J. Donoso
  • Klaus von Gadow
Chapter
Part of the Managing Forest Ecosystems book series (MAFE, volume 23)

Abstract

Although the majority of the world’s forest ecosystems are dominated by uneven-sized mixed species stands, forest management practice and theory have focused on the development of plantation monocultures to maximize the supply of timber at low cost. Societal expectations are changing, however, and uneven-aged multi-species ecosystems are often believed to be superior to monocultures in addressing a wide range of expectations. This chapter attempts to clarify terminology and define, albeit somewhat simplistically, continuous cover forestry (CCF) as opposed to rotation management (RFM). RFM is characterized by three distinct development phases: planting–thinning–clearfelling. At least two of these phases, and sometimes all three, occur simultaneously in CCF. The second section of this chapter describes the development of the European Plenter Forest system, which, being based on a sound theory of sustainable use and an extended period of practical applications, is often considered to be the “Archetype” of CCF. Prompted by a rising interest in continuous cover forestry, specific methods have been developed in many other regions. Accordingly, the third section briefly covers some approaches in China, Chile, Mexico, the United States and South Africa. The forth section introduces adaptive approaches to CCF. The ideal J-shaped target structure is an artificial construct which is easy to implement and thus useful for management. The problem is to define it. This problem is aggravated when foresters wish to (a) mimic natural structures which do not resemble inverse J-shaped diameter distributions and (b) when there is a need to respond to changing economic and environmental conditions.

Keywords

Forest Owner Selective Harvesting Guide Curve Forest Management System Land Expectation Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Biolley H (1897) L’aménagement des forets d’apres la methode du controle. Couvet: manuscript own edition.Google Scholar
  2. Biolley H (1901) Le jardinage cultural. J Forestier Suisse 52:97–104 & 11–132Google Scholar
  3. Biolley H (1980) Oeuvre écrite. Supplément to Zeitschrift des Schweizerischen Forstvereins 66:458Google Scholar
  4. Breitenbach F (1974) Southern Cape Forests and trees. The Government Printer, Pretoria, 328 pGoogle Scholar
  5. Buongiorno J, Mitchie BR (1980) A matrix model of uneven-aged forest management. Forest Sci 26(4):609–625Google Scholar
  6. Cancino J, v Gadow K (2001) Stem number guide curves for uneven-aged forests – development and limitations. In: v Gadow K, Nagel J, Saborowski J (eds): Continuous cover forestry – Assessment, Analysis, Scenarios. Kluwer Academic Publishers, Dordrecht, pp 163–175Google Scholar
  7. CONAF-CONAMA (1999) Catastro y Evaluación Recursos Vegetacionales Nativos de Chile. Informe Nacional con Variables Ambientales, Santiago, ChileGoogle Scholar
  8. Davies O, Haufe J, Pommerening A (2008) Silvicultural principles of continuous cover forestry – a guide to best practice. Forestry Commission Wales, England, 111 ppGoogle Scholar
  9. Donoso PJ (2002) Structure and growth in coastal Evergreen forests as the bases for uneven-aged silviculture in Chile. PhD thesis, SUNY-ESF, New YorkGoogle Scholar
  10. Donoso PJ (2005) Crown Index: a canopy balance indicator to assess growth and regeneration in uneven-aged forest stands of the Coastal Range of Chile. Forestry 78(4):337–351CrossRefGoogle Scholar
  11. Donoso PJ, Nyland RD (2005) Seeding density according to structure, dominance and understory cover in old-growth forest stands of the evergreen forest type in the coastal range of Chile. Rev Chil Hist Nat 78(1):51–63CrossRefGoogle Scholar
  12. Donoso PJ, Samberg L, Hernández MP, Schlegel B (2009) The old-growth forests in the Valdivian Andes: composition, structure and growth. In Verhoest N., P. Boeckx, C. Oyarzún and R. Godoy, Ecological advances in Chilean temperate Rainforests, Ed. Academia Press, Gent, Belgium, p. 171–182Google Scholar
  13. Dralet M (1820) Traité des forêts des arbres résineux et des terrains adjacent, sur les montagnes de la France. Vieussieux, ToulouseGoogle Scholar
  14. Dvořak L, Bachmann P, Mandallaz D (2001) Sturmschäden in ungleichförmigen Beständen. Schweizerische Zeitschrift für Forstwesen 152:445–452CrossRefGoogle Scholar
  15. Fähser L (1997) Naturnahe Waldnutzung – das Beispiel Lübeck. Handbuch Kommunale Politik Raabe, pp 1–17Google Scholar
  16. García E (1989) Modificaciones al sistema de clasificación climática de kôpen (para adaptarlo a las condiciones de la República Mexicana). Offset Larios, México D.F., 165 pGoogle Scholar
  17. Gerlach JP, Gilmore DW, Puettmann KJ, Zasada JC (2002) Mixed-species forest ecosystems in the Great Lakes region: a bibliography. Staff Paper Series Number 155. Department of Forest Resources, College of Natural Resources and Minnesota Agricultural Experiment Station, University of Minnesota, St. Paul, p 279Google Scholar
  18. Guldin JM (1991) Uneven-aged BDq regulation of Sierra Nevada mixed conifers. West J Appl Forest 6(2):27–32Google Scholar
  19. Gurnaud A (1878) Cahiers d’aménagement pour l’application de la méthode par contenance. Exposé sur la forêt des Eperons (admis à l’exposition universelle de 1878). Tremblay, ParisGoogle Scholar
  20. Gurnaud A (1882) Le contrôle et le régime forestier. Revue des Eaux et Forêts 21:1–23Google Scholar
  21. Hansen GD, Nyland RD (1987) Effects of diameter distribution on the growth of simulated uneven-aged sugar maple stands. Can J Forest Res 17(1):1–8CrossRefGoogle Scholar
  22. Helliwell R (1993) Newsletter 4. Continuous Cover Forestry Group, UKGoogle Scholar
  23. Hernández-Díaz JC, Corral-Rivas JJ, Quiñones-Chávez A, Bacon-Sobbe JR, Vargas-Larreta B (2008) Evaluación del manejo forestal regular e irregular en bosques de la Sierra Madre Occidental. Madera y Bosques 14(3):25–41Google Scholar
  24. Hui GY, Hu YB, Xu H, Gadow Kv (2007) Structure-based forest management. China Forestry Publishing House, 188 pp (In Chinese)Google Scholar
  25. Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316(5833):1866–1869PubMedCrossRefGoogle Scholar
  26. Keto-Tokoi P, Kuuluvainen T (2010) Suomalainen aarniometsä. Maahenki, Kariston kirjapaino, Hämeenlinna, 302 ppGoogle Scholar
  27. Knoke T (1998) Analyse und Optimierung der Holzproduktion in einem Plenterwald: Zur Forstbetriebsplanung in ungleichaltrigen Wäldern. Forstliche Forschungsberichte München 170:1–182Google Scholar
  28. Lara A, Soto D, Armesto J, Donoso P, Wernli C, Nahuelhual L, Squeo F (2003) Componentes científicos clave para una política nacional sobre usos, servicios y conservación de los bosques nativos. Universidad Austral de Chile e Iniciativa Científica Milenio, Valdivia, 127 pGoogle Scholar
  29. Laughton FS (1937) The silviculture of the indigenous forests of the Union of South Africa with special reference to the forests of the Knysna region. Science Bulletin 157, Forestry Series 7, Government Printer, Pretoria, 169 pGoogle Scholar
  30. Mason B, Kerr G, Simpson J (1999) What is continuous cover forestry? Forestry Commission Information Note 29. Forestry Commission, EdinburghGoogle Scholar
  31. Mendoza MR, Rodriguez CR (1959) Método mexicano de ordenación de montes. Apendice 7 del proyecto general de ordenación forestal de la UIEF Michoacana de Occidente. Unidad Industrial de Explotación Forestal Michoacana de Occidente, S. De R.L. Uruapan. Mich. 82 ppGoogle Scholar
  32. Mitscherlich G (1952) Der Tannen-Fichten-(Buchen)-Plenterwald. Heft 8 d. Schriftenreihe der Badischen Forstlichen Versuchsanstalt, Freiburg, p 42Google Scholar
  33. Mlinsek D (1972) Ein Beitrag zur Entdeckung der Postonja Kontrollmethode in Slowenien. Forstwissenschaftliches Zentralblatt 91:292–296Google Scholar
  34. Mlinsek D (1994) Der naturnahe Waldbau – sein kognitiver Weg – eine Herausforderung. Der Dauerwald 10:35–43Google Scholar
  35. Mohr C, Schori C (1999) Femelschlag oder Plenterung: Ein Vergleich aus betriebswirtschaftlicher Sicht. Schweizerische Zeitschrift für Forstwesen 150:49–55CrossRefGoogle Scholar
  36. O’Hara K, Gersonde R (2004) Stocking Control Concepts in Uneven-Aged Silviculture. Forestry 77(2):131–143CrossRefGoogle Scholar
  37. Oliver CD, Larson BC (1996) Forest stand dynamics. John Wiley, New York, 520 ppGoogle Scholar
  38. Otto H-J (1994) Die Verwirklichung naturgemäßer Waldwirtschaft in den Niedersächsischen Landesforsten – Chancen und Probleme. Der Dauerwald 10:3–23Google Scholar
  39. Pommerening A, Murphy ST (2004) A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77(1):27–44CrossRefGoogle Scholar
  40. Rautiainen O (1998) Modelling the yield and growth of uneven-aged Shorea robusta stands. PhD thesis, University of JoensuuGoogle Scholar
  41. Rodríguez CR (1958) Discusión de fórmulas para el cálculo de la productividad maderable y exposición del Método Mexicano de Ordenación de Montes de especies coníferas. Monografí Ftal. del Edo. de Michoacán. Comisión Ftal. del Estado. 245 ppGoogle Scholar
  42. Rzedowski J (1978) Vegetación de México. Limusa, MéxicoGoogle Scholar
  43. Schütz J-P (1975) Dynamique et conditions d’équilibre de peuplements jardinés sur les stations de la hétraie à sapin. Schweizerische Zeitschrift für Forstwesen 126:637–671Google Scholar
  44. Schütz J-Ph (1994) Geschichtlicher Hergang und aktuelle Bedeutung der Plenterung in Europa. Allgemeine Forst und Jagdzeitung 165(5–6):106–114Google Scholar
  45. Schütz JP (1997) Sylviculture 2: La gestion des forêts irrégulières et mélangées. Presses Polytechniques et Universitaires, LausanneGoogle Scholar
  46. Schütz JP (2001a) Der Plenterwald und weitere Formen strukturierter und gemischter Wälder. Parey, BerlinGoogle Scholar
  47. Schütz JP (2001b) Opportunities and strategies of transforming regular forests to irregular forests. Forest Ecol Manage 151:87–94CrossRefGoogle Scholar
  48. Schütz JP (2006) Modelling the demographic sustainability of pure beech plenter forests in Eastern Germany. Ann Forest Sci 63(1):93–100CrossRefGoogle Scholar
  49. Schütz JE von (1757) Ökonomisches Bedenken von dem Nachteil deren Gehaue in den sogennanten Schwartzen Hölzer. In: Ökonomisches Bedenken über allerhand in die Hauswirtschaft einschlagende Sachen, vol 1, Chemnitz: Stössel, pp 1–18Google Scholar
  50. Secretaría de Recursos Naturales y Medio Ambiente (SRNyMA) (2002) Programa Estratégico Forestal 2030, Secretaría de Recursos Naturales y Medio Ambiente del Estado de Durango. Durango, Dgo, 242 pGoogle Scholar
  51. Servicio Meteorológico Nacional (SMN) 2006Google Scholar
  52. Seydack AHW, Vermeulen WJ, Heyns HE, Durrheim GP, Vermeulen C, Willems D, Ferguson MA, Huisamen J, Roth J (1995) An unconventional approach to timber yield regulation for multi-aged, multi-species forests. II. Application to a South African forest. Forest Ecol Manage 77:155–168CrossRefGoogle Scholar
  53. Sterba H, Zingg A (2001) Target diameter harvesting. Forest Ecol Manage 151:95–105CrossRefGoogle Scholar
  54. Susmel L (1980) Normalizzazione delle foreste alpine – basi ecosistemiche – equilibrio – modelli colturali -produttivita. Liviana editrice, Padova, 437 pGoogle Scholar
  55. Tabaku V (1999) Struktur von Buchen-Urwäldern in Albanien im Vergleich mit deutschen Buchen-Naturwaldreservaten und -Wirtschaftswäldern. Cuvillier Verlag, GöttingenGoogle Scholar
  56. Thoms CA, Betters DR (1998) The potencial for ecosytems management in Mexico´s forest ejidos. Forest Ecol Manage 103:149–1179CrossRefGoogle Scholar
  57. Torres RJM (2000) Sostenibiladad del volumen de cosecha calculado con el método de ordenación de montes. Madera y Bosques 6(2):57–72Google Scholar
  58. Virgilietti P, Buongiorno J (1997) Modeling forest growth with management data: a matrix approach for the Italian Alps. Silva Fennica 31(1):27–42Google Scholar
  59. Wehenkel C, Corral-Rivas JJ, Hernandez-Díaz JC, v. Gadow K (2011) Estimating balanced structure areas in multi-species forests on the Sierra Madre Occidental, Mexico. Ann Forest Sci 68:385–394CrossRefGoogle Scholar
  60. Westphal C, Tremer N, Oheimb G v, Hansen J, Gadow K v, Härdtle W (2006) Is the reverse J-shaped diameter distribution universally applicable in European virgin beech forests? Forest Ecology and Management 223: 75–83Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jean-Philippe Schütz
    • 1
    Email author
  • Timo Pukkala
    • 2
  • Pablo J. Donoso
    • 3
  • Klaus von Gadow
    • 4
  1. 1.Eidgenössische Technische HochschuleZürichSwitzerland
  2. 2.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  3. 3.Faculty of Forest Sciences and Natural ResourcesUniversidad Austral de ChileValdiviaChile
  4. 4.Burckhardt InstituteGeorg-August University GöttingenGöttingenGermany

Personalised recommendations