Skip to main content

Thiamin(e): The Spark of Life

Part of the Subcellular Biochemistry book series (SCBI,volume 56)

Abstract

One of the earliest vitamins to be discovered and synthesized, thiamin was originally spelled with an “e”. The terminal “e” was dropped when it was found that it was not an amine. It is still spelled with and without the “e” depending on the text. This chapter provides a brief historical review of the association of thiamin with the ancient scourge of beriberi. It emphasizes that beriberi is the model for high calorie malnutrition because of its occurrence in predominantly white rice consuming cultures. Some of the symptomatology of this ancient scourge is described, emphasizing the difference from that seen in starvation. High calorie malnutrition, due to excessive ingestion of simple carbohydrates, is widely encountered in the U.S.A. today. Thiamin deficiency is commonly associated with this, largely because of its cofactor status in the metabolism of glucose. The biochemistry of the three phosphorylated esters of thiamin and the transporters are discussed and the pathophysiology of thiamin deficiency reviewed. The role of thiamin, and particularly its synthetic derivatives as therapeutic agents, is not fully appreciated in Western civilization and a clinical section describes some of the unusual cases described in the scientific literature and some experienced by the author. The possible role of high calorie malnutrition and related thiamin deficiency in juvenile crime is hypothesized.

Keywords

  • Sudden Infant Death Syndrome
  • Thiamin Deficiency
  • White Rice
  • Maple Syrup Urine Disease
  • Simple Carbohydrate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamolekum B, Ndububa DA (1994) Epidemiology and clinical presentation of a seasonal ataxia in Western Nigeria. J neurol Sci 124(1):95–98

    Google Scholar 

  • Bannister R (ed) (1984) Autonomic failure: a textbook of clinical disorders of the autonomic nervous system, 2nd edn. Oxford University Press

    Google Scholar 

  • Barker JN, Jordan F (1982) Phrenic thiamin and neuropathy in sudden infant deaths. In: Sable HZ, Gubler CJ (eds) Thiamin: twenty years of progress. Ann N Y Acad Sci 378: 449–452

    Google Scholar 

  • Beltramo E, Berrone E, Buttiglieri S, Porta M (2004) Thiamine and benfotiamine prevent increased apoptaosis in endothelial cells and pericytes cultured in high glucose. Diabetes Metab Res Rev 20(4):330–336

    PubMed  CAS  Google Scholar 

  • Bettendorff L, Michel-Cahay C, Grandfils C, DeRycker C, Schoffeniels E (1987) Thiamine triphosphate and membrane-associated thiamine phosphatases in the electric organ of Electophorus electricus. J Neurochem 49:495–502

    PubMed  CAS  Google Scholar 

  • Bettendorff L, Kolb HA, Schoffeniels E (1993) Thiamine triphosphate activates anion channels of large unit conduction in neuroblastoma cells. J Membr Biol 136:281–288

    PubMed  CAS  Google Scholar 

  • Bettendorff L, Hennuy B, De Cherek A, Wins P (1994) Chloride permeability of rat brain vesicles correlates with thiamine trophosphate content. Brain Res 652:157–160

    PubMed  CAS  Google Scholar 

  • Bhuvaneswaran C, Sreenivaran A (1962) Problems of thiamine deficiency states and their amelioration. Ann N Y Acad Sci 98:576–601

    PubMed  CAS  Google Scholar 

  • Bitsch R, Wolf M, Moller J et al (1991) Bioavailability assessment of the lipophilic benfotiamine as compared to a water-soluble thiamine derivative. Ann Nutr Metab 35:292–296

    PubMed  CAS  Google Scholar 

  • Blass J (1972) Abnormalities in pyruvate dehydrogenase and neurologic function. Intern J Neruosci 4:65–69

    CAS  Google Scholar 

  • Blass JP, Gibson GE (1977) Abnormality of a thiamine requiring enzyme in patients with Wernicke-Korsakoff syndrome. N Engl J Med 297:1367–1370

    PubMed  CAS  Google Scholar 

  • Blass JP, Gleason P, Brush D, DiPonte P, Thaler H (1988) Thiamine and Alzheimer’s disease. Arch Neurol 45:833–835

    PubMed  CAS  Google Scholar 

  • Boni L, Kieckens L, Hendricx A (1980) An evaluation of a modified erythrocyte transketolase assay for assessing thiamine nutritional adequacy. J Nutr Sci Vitaminol 26:507–514

    PubMed  CAS  Google Scholar 

  • Brin M (1964) The antithiamine effects of amprolium in rats on tissue transketolase activity. Toxicol Appl Pharmacol 6:454–458

    PubMed  CAS  Google Scholar 

  • Caddell JL (1972) Magnesium deprivation in sudden unexpected infant death. Lancet ii258–262

    Google Scholar 

  • Cooper JR, Pincus JH (1979) The role of thiamine in nervous tissue. Neurochem Res 4:223–239

    PubMed  CAS  Google Scholar 

  • Cooper JR, Itokawa Y, Pincus JH (1969) Thiamine triphosphate deficiency in subacute necrotizing encephalomyelopathy. Science 164:72–73

    Google Scholar 

  • Cooper JR, Pincus JH, Itokawa Y, Piros K (1970) Experiences with phosphoribosyl transferase inhibition in subacute necrotizing encephalomyelopathy. N Engl J Med 283:793–795

    PubMed  CAS  Google Scholar 

  • Dancis J, Hutzler J, Rokkones T (1967) Intermittent branched chain ketonuria: Variant of maple-syrup-urine disease. New Engl J Med 276:84–89

    PubMed  CAS  Google Scholar 

  • Djoenaidi W, Notermans SL (1990) Thiamine tetrahydrofurfuryl disulfide in nutritional polyneuropathy. Eur Arch Psychiatry Neurol Sci 239:218–220

    PubMed  CAS  Google Scholar 

  • Djoenaidi W, Notermans SL, Dunda G (1992) Beriberi caardiomyopathy Eur J Clin Nutr 46:227–234

    PubMed  CAS  Google Scholar 

  • Duran M, Tielens AGM, Wadman SK et al (1978) Effects of thiamine in a patient with a variant form of branched-chain ketoaciduria. Acta Paediatr Scand 67:367–372

    PubMed  CAS  Google Scholar 

  • Dyckner T, Elk B, Nyhlin H, Wester PO (1985) Aggravation of thiamine deficiency by magnesium depletion. A case report. Acta Scand 218:129–131

    CAS  Google Scholar 

  • Edwin EE, Jackman R (1970) Thiaminase I in the development of cerebrocortical necrosis in sheep and cattle. Nature 228(5273):772–774

    PubMed  CAS  Google Scholar 

  • Eisinger J, Bagneres D, Arroyo P, Plantamura A, Ayavou T (1994) Effect of magnesium, high energy phophates, piracetam and thiamin on erythrocyte transketolase. Magnes Res 7:59–61

    PubMed  CAS  Google Scholar 

  • Elmadfa I, Majchrzak D, Rust P, Genser D (2001) The thiamine status of adult humans depend on carbohydrate intake. Int J Vitam Nutr Res 71:217–221

    PubMed  CAS  Google Scholar 

  • Elsas LJ, Danner DJ (1982) The role of thiamin in maple syrup urine disease. In: Sable LJ, Gubler CJ (eds) Thiamin: twenty years of progress. Ann N Y Acad Sci 378: 404–420

    Google Scholar 

  • Fehily L (1944) Human milk intoxication due to B1 avitaminosis. Br Med J 2:590–592

    PubMed  CAS  Google Scholar 

  • Frank T, Bitsch R, Malwaki J, Stein G (1999) Alteration of thiamine phramacokinetics by end-stage renal disease (ESRD). Int J Clin Pharmacol Ther 37:449–455

    PubMed  CAS  Google Scholar 

  • Fujita A (1954) Thiaminase. In: Nord FF (ed) Advances in enzymology, vol 15—. Interscience Publishers, pp 389–421

    Google Scholar 

  • Fujita T, Suzuoki Z (1973a) Enzymatic studies on the metabolism of the tetrahydrofurfuryl mercaptan moiety of thiamine tetrahydrofurfuryl disulfide. I Microsomal S-transmethylase. J Biochem 74:717–722

    PubMed  CAS  Google Scholar 

  • Fujita T, Suzuoki Z (1973b) Enzymatic studies on the metabolism of the tetrahydrofurfuryl mercaptan moiety of thiamine tetrahydrofurfuryl disulfide. III Oxidative cleavage of the tetrahydrofuran moiety. J Biochem 74:733–738

    PubMed  CAS  Google Scholar 

  • Fujita T, Suzuoki Z, Kozuka S (1973a) Enzymatic studies on the metabolism of the tetrahydrofurfuryl mercaptan moiety of thiamine tetrahydrofurfuryl disulfide. II Sulfide and sulfoxide oxygenases in microsomes. J Biochem 74:723–732

    PubMed  CAS  Google Scholar 

  • Fujita T, Teraoka A, Suzuoki Z (1973b) Enzymatic studies on the metabolism of the tetrahydrofurfuryl mercaptan moiety of thiamine tetrahydrofurfuryl disulfide. IV Induction of microsomal S-transmethylase and sulfide and sulfoxide oxygenases in the drug-treated rat. J Biochem 74:739–745

    PubMed  CAS  Google Scholar 

  • Fujiwara M (1965) Absorption, excretion and fate of thiamine and its derivatives in [the] human body. In: Shimazono N, Katsura E (eds) Thiamine and Beriberi. Igaku Shoin Ltd, Tokyo, pp 179–213

    Google Scholar 

  • Ganapathy V, Smith SB, Prasad PD (2004) SLC19: the folate/thiamine transporter family. Pflugers Arch 447:641–646

    PubMed  CAS  Google Scholar 

  • Gibson GE, Barclay L, Blass J (1982) The role of the cholinergic system in thiamin deficiency. In: Sable HZ, Gubler CJ (eds) Thiamin: twenty years of progress. Ann N Y Acad Sci 378: 382–403

    Google Scholar 

  • Gibson GE, Zhang H (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 40:493–504

    PubMed  CAS  Google Scholar 

  • Gray GE (1987) Crime and diet: Is there a relationship? Wld Rev Nutr Diet 49:66–86

    CAS  Google Scholar 

  • Harada H, Rikimaru F, Mori T, Tanaka ME et al (2002) Electroencephalographic changes during intravenous olfactory stimulation in humans. Clin Electroencephalogr 33:189–192

    PubMed  Google Scholar 

  • Haupt E, Ledermann H, Kopcke W (2005) Benfotiamine in the treatment of diabetic polyneuropathy—a three–week randomized, controlled pilot study (BEDIP study) Int J Clin Pharmacol Ther 2005;43:71–77. Erratum in: Int J Clin Pharmacol Ther 2005;43:304

    CAS  Google Scholar 

  • Henderson GI, Schenker S (1975) Reversible impairment of cerebral DNA synthesis in thiamine deficiency. J Lab Clin Med 86:77–90

    PubMed  CAS  Google Scholar 

  • Inouye K, Katsura E (1965) Etiology and pathology of beriberi. In: Thiamine and Beriberi. Igaku Shoin Ltd., Tokyo, pp 1–28

    Google Scholar 

  • Iwata H, Nishikawa T, Fujimoto S (1969a) Monoamine oxidase activities in tissues of thiamine-deficient rats. J Pharm Pharmac 21:237–240

    CAS  Google Scholar 

  • Iwata H, Watanabe K, Nishikawa T, Ohashi M (1969b) Effects of drugs on behavior, heart rate and catecholamine levels in thiamine-deficient rats. Eur J Pharmacol 6:83–89

    PubMed  CAS  Google Scholar 

  • Iwata H, Yabushita Y, Doi T, Matsuda T (1985) Synthesis of thiamine triphosphate in rat brain in vivo. Neurochem Res 10:779–787

    PubMed  CAS  Google Scholar 

  • Jansen BCT, Donath WF (1926) On the isolation of the anti-beriberi vitamin. Proc I Acad Wei Amsterdam 29:1390

    Google Scholar 

  • Jeffrey HE, McCleary BV, Hensley WJ, Read DJC (1985) Thiamine deficiency- a neglected problem of infants and mothers- possible relationship to sudden infant death syndrome. Aust NZ J Obst Gynaecol 25:198–202

    CAS  Google Scholar 

  • Jeyasingham MD, Pratt O, Burns A, Shaw GK, Thompson A, Marsh A (1987) The activation of red blood cell transketolase in groups of patients especially at risk from thiamin deficiency. Psych Med 117:311–318

    Google Scholar 

  • Kikuchi S, Nishikawa K, Suzuoki Z (1970) The metabolism of thiamine thetrhydrofurfuryl disulfide in the rat, rabbit and man. Eur J Pharmacol 9:367–373

    PubMed  CAS  Google Scholar 

  • Kimura M, Itokawa Y (1977) Effects of calcium and magnesium deficiency on thiamine distribution in rat brain and liver. J Neurochem 28:389–393

    PubMed  CAS  Google Scholar 

  • Lagarde WH, Underwood LE, Moats-Staats BM, Calikoglu AS (2004) Novel mutation in the SLC19A2 gene in an African-American female with thiamine-responsive megaloblastic anemia syndrome. Am J Med Genet 125:299–305

    Google Scholar 

  • Lesch M, Nyhan WL (1964) A familial disorder of uric acid metabolism and central nervous system function. Am J Med 36:561–570

    PubMed  CAS  Google Scholar 

  • Loew FM (1974) Possible animal model of subacute necrotizing (Leigh’s) encephalomyelopathy J Pediat 85:876–877

    PubMed  CAS  Google Scholar 

  • Lonsdale D (1975) Thiamine metabolism in disease. Crit Rev Lab Sci 5:289–313

    CAS  Google Scholar 

  • Lonsdale D (1977) Treatment of threatened SIDS with megadose thiamine hydrochloride. Pediat Res 11:379 (Abstr)

    Google Scholar 

  • Lonsdale D (1978) Wernicke’s encephalopathy and hyperalimentation. JAMA 239:1133. (Letter to the editor)

    PubMed  CAS  Google Scholar 

  • Lonsdale D (1980) Recurrent febrile lymphadenopathy treated with large doses of vitamin B1: Report of two cases. Dev Pharmacol Ther 1:254–264

    PubMed  CAS  Google Scholar 

  • Lonsdale D (1981) The syndrome of functional dysautonomia. Med Hypoth 7:495–502

    CAS  Google Scholar 

  • Lonsdale D (1982) Effect of thiamine tetrahydrofurfuryl disulfide on audiogenic seizures in DBA/J2 mice. Dev Pharmacol Ther 4:28–36

    PubMed  CAS  Google Scholar 

  • Lonsdale D (1987a) A nutritionist’s guide to the clinical use of vitamin B1. Life Sciences Press, Tacoma, pp. 5–12

    Google Scholar 

  • Lonsdale D (1987b) Biochemical studies in functional dysautonomia. In: A nutritionist’s guide to the clinical use of vitamin B1. Life Sciences Press, Tacoma, WA, pp. 78–115

    Google Scholar 

  • Lonsdale D (1990a) Hypothesis and case reports: possible thiamin deficiency. J Am Coll Nutr 9:13–17

    PubMed  CAS  Google Scholar 

  • Lonsdale D (1990b) Asymmetric functional dysautonomia. J Nutr Med 1:59–61

    Google Scholar 

  • Lonsdale D (1990c) Thiamine deficiency and sudden deaths. Lancet ii:376

    Google Scholar 

  • Lonsdale D (1992a) Criminal behavior and nutrition. J Adv Med 5(2):494–504

    Google Scholar 

  • Lonsdale D (1992b) Criminal behavior and nutrition. J Adv Med 5:115–123

    Google Scholar 

  • Lonsdale D (1994a) Crime and violence: A hypothetical explanation of its relationship with high calorie malnutrition. J Adv Med 7(3):171–180

    Google Scholar 

  • Lonsdale D (1994b) The three circles of health. In: Why I left orthodox medicine. Hampton Roads Publishing Company, Charlottesville, pp 189–207

    Google Scholar 

  • Lonsdale D (2001a) Nutritional therapy in children with functional disorders of activity, behavior, attention and learning. Clin Pract Altern Med 2:196–203

    Google Scholar 

  • Lonsdale D (2001b) Sudden infant death syndrome requires genetic predisposition, some form of stress and marginal malnutrition. Med Hypoth 57:382–386

    CAS  Google Scholar 

  • Lonsdale D. (2006a) http://www.soilandhealth.org/02/0201hyglibcat/0201hyglibcat.html

  • Lonsdale D (2006b) A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. eCAM 3(1):49–59

    PubMed  Google Scholar 

  • Lonsdale D (2006c) Three case reports to illustrate clinical applications in the use of transketolase. eCAM 4(2):247–250

    Google Scholar 

  • Lonsdale D, Kissling CD (1987) Clinical trials with thiamine tetrahydrofurfuryl disulfide in Down’s syndrome. J Orthomolecular Med 1:169–175

    Google Scholar 

  • Lonsdale D, Mercer RD (1972) Primary hypoventilation syndrome. Lancet ii:487 (Letter to the editor)

    Google Scholar 

  • Lonsdale D, Price JW (1973) Pyruvic aciduria in the detection of thiamine responsive encephalopathy. Cleve Clin Quart 40:79–88

    CAS  Google Scholar 

  • Lonsdale D, Shamberger RJ (1980) Red cell transketolase as an indicator of nutritional deficiency. Am J Clinc Nutr 33:205–211

    CAS  Google Scholar 

  • Lonsdale D, Faulkner WR, Price JW, Smeby RR (1969) Intermittent cerebellar ataxia associated with hyperpypruvic academia, hyperalaninemia, and hyperalaninuria. Pediatrics 43:1025–1034

    PubMed  CAS  Google Scholar 

  • Lonsdale D, Nodar RH, Orlowski JP (1979) The effects of thiamine on abnormal brainstem auditory evoked potentials. Cleve Clin Quart 46:83–88

    CAS  Google Scholar 

  • Lonsdale D, Nodar RH, Orlowski JP (1982) Brainstem dysfunction in infants reaponsive to thiamine disulfide; preliminary studies in four patients. Clin EEG 13:82–88

    CAS  Google Scholar 

  • Lonsdale D, Shamberger RJ, Audhya T (2002) Treatment of autistic spectrum children with thiamine tetrahydrofurfuryl disulfide: a pilot study. Neuroendocrinol Lett 23:303–308

    PubMed  CAS  Google Scholar 

  • Lorber A, Gazit A Z, Khoury A, Schwartz Y, Mandel H (2003) Cardiac manifestations in thiamine-responsive megaloblastic anemia syndrome. Pediatr Cardiol 24:476–481

    PubMed  CAS  Google Scholar 

  • Makarchikov AE, Lakaye B, Gulyai IE, Czerniecki J, Coumans B, Wins P et al. (2003) Thiamine triphosphatase and thiamine triphophatase activities: from bacteria to mammals. Cell Mol Life Sci 60:1477–1488

    PubMed  CAS  Google Scholar 

  • Markannen T, Kalliomaki JL (1966) Transketolase activity of blood cells in various clinical conditions. Am J Med Sci 252:564–569

    Google Scholar 

  • Markson LM, Edwin EE, Lewis G, Richardson C (1974) The production of cerebrocortical necrosis in ruminant calves by the intraruminal administration of amprolium. Br Vet J 130:9–16

    PubMed  CAS  Google Scholar 

  • Mastrogiacoma P, Bettendorff L, Grisar T, Kish SJ (1996) Brain thiamine, its phosphate esters and its metabolizing enzymes in Alzheimer’s disease. Ann Neurol 39:585–591

    PubMed  CAS  Google Scholar 

  • Matsui K, Hakahara H, Watanabe J, Tamatsu H, Nakayawa M et al (1985) Inhibition by thiamine tetrahydrofurfuryl disulfide (TTFD) of the arachidonic acid cascade-line activation as evidenced in the heart-lung preparation of the dog. Jpn J Pharmacol 39:375–379

    PubMed  CAS  Google Scholar 

  • McCandless DW (1982) Energy metabolism in the lateral vestibular nucleus in pyrithiamin-induced thiamin deficiency. In: Sable HZ, Guhbler CJ (eds) Thiamin: twenty years of progress. Ann N Y Acad Sci 378: 355–364

    Google Scholar 

  • McIntyre N, Stanley NN (1971) Cardiac beriberi: two modes of presentation. Br Med J 3:567–569

    PubMed  CAS  Google Scholar 

  • Meador KJ, Loring D, Nichols M, Zamrini E, Rivner M, Posas H et al (1993a) Preliminary findings of high dose thiamine in dementia of Alzheimer’s type. J Geriatr Psychiatry Neurol 6:222–229

    PubMed  CAS  Google Scholar 

  • Meador KJ, Nichols ME, Franke P, Durkin MW, Oberzin RL, Moore LE et al (1993b) Evidence for a central cholinergic effect of high dose thiamin. Ann Neurol 34:724–726

    PubMed  CAS  Google Scholar 

  • Mimori Y, Katsuoka H, Nakamura S (1996) Thiamine therapy in Alzheimer’s disease. Metab Brain Dis 11(1):89–94

    PubMed  CAS  Google Scholar 

  • Minz B (1938) Sur la liberation de la vitamin par le tronc isole de nerf pheumogastrique soumis a la excitation electrique. C.R. Soc Biol (Paris) 127:1251–1253

    CAS  Google Scholar 

  • Murata K (1965) Thiaminase. In: Shimazono N, Katsura E (eds) Beriberi and thiamine. Igaku Shoin Ltd., Tokyo, pp 220–254

    Google Scholar 

  • Nabokina SM, Said HM (2004) Characterization of the 5′-regulating region of the human thiamin transporter SLC19A3: In vitro and in vivo studies. Am J Physiol Gastrointest Liver Physiol 287:G822–G829

    PubMed  CAS  Google Scholar 

  • Nishimune T, Watanabl Y, Okazaki H, Akai H (2000) Thiamin is decomposed due to Anaphe spp. Entomophagy in seasonal ataxia patients in Nigeria. J Nutr 130:1625–1628

    PubMed  CAS  Google Scholar 

  • Oishi K, Barchi M, Au AC, Gelb BD, Diaz GA (2004) Male infertility due to germ cell apoptosis in mice lacking the thiamin carrier Tht1. A new insight into the critical role of thiamin in spermatogenesis. Dev Biol 266:299–309

    PubMed  CAS  Google Scholar 

  • Ozdemir MA, Alcakus M, Kuroglu, Gunes T, Torun YA (2002) TRMA syndrome (thiamine-responsive megaloblastic anemia): a case report and review of the literature. Pediatr Diab 3:205–209

    Google Scholar 

  • Pang JA, Yardumian A, Davies R, Patterson DL (1986) Shoshin beriberi an underdiagnosed condition? Intensive Care Med 12(5):380–382

    PubMed  CAS  Google Scholar 

  • Peters RA (1936) The biochemical lesion in vitamin B1 deficiency. Lancet 1:1162–1165

    Google Scholar 

  • Platt BS (1967) Thiamine deficiency in human beriberi and in Wernicke’s encephalopathy. In: Wolstenholme GEW, O’Connor M (eds) Thiamine deficiency. Little Brown and Company, Boston, pp 135–143

    Google Scholar 

  • Rogers LE, Porter FS, Sidbury JB (1969) Thiamine-responsive megaloblastic anemia. Pediat 74:494–504

    Google Scholar 

  • Sable HZ, Gubler CJ (eds) (1982) Thiamin: twenty years of progress. Ann NY Acad Sci 378:355–364

    Google Scholar 

  • Schauss A (1981) Diet, crime and delinquency. Berkeley, CA, pp 1–108

    Google Scholar 

  • Scriver CR, Mackenzie S, Clow CL, Delvin E (1971) Thiamine-responsive maple-syrup urine disease. Lancet i:310–312

    Google Scholar 

  • Seligman H, Halkin H, Rauchfleisch S et al (1991) Thiamine deficiency in patients with congestive heart failure receiving long-term furosemide therapy: a pilot study. Am J Med 91:151–155

    Google Scholar 

  • Shreeve JE, Edwin EE (1974) Thiaminase-producing strains of Cl. Sporogenes associated with outbreaks of cerebrocortical necrosis. Vet Rec 94(15):330

    PubMed  CAS  Google Scholar 

  • Stepuro AL, Piletskaya TO, Stepura II (2005) Role of thiamine thiol forms in nitric oxide metabolism. Biochemistry (Mosc) 70:339–349

    CAS  Google Scholar 

  • Thornalley PJ (2003) Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 57:2110–2120

    Google Scholar 

  • Wells DG, Baylis EM, Holoway L, Marks V (1968) Erythrocyte-transketolase activity in megaloblastic anaemia. Lancet ii:543–545

    Google Scholar 

  • Williams RR (1938) Chemistry of thiamine (Vitamin B1). JAMA 110:727–731

    CAS  Google Scholar 

  • Williams RD, Mason HL, Marschelle HP, Russell MW (1943) Induced thiamine (Vitamin B1) deficiency in man. Arch Int Med 71:38–53

    CAS  Google Scholar 

  • Yui Y, Fujiwara H, Mitsui H et al (1978) Furosemide-induced thiamine deficiency (abstract). Jpn Circ J 4:744

    Google Scholar 

  • Zbinden G (1962) Therapeutic use of vitamin B1 in diseases other than beriberi. Ann NY Acad Sci 98:550–561

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derrick Lonsdale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lonsdale, D. (2012). Thiamin(e): The Spark of Life. In: Stanger, O. (eds) Water Soluble Vitamins. Subcellular Biochemistry, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2199-9_11

Download citation