Radiometry of Partially Coherent Radiation

  • Michael Bukshtab
Part of the Springer Series in Optical Sciences book series (SSOS, volume 163)


The origin of the photometric and radiometric concept is associated with the desire to observe and quantify radiation and to measure physical parameters of light beams via energy and power extents. Owing to the finiteness of the dimensions and time constants of visual and radiometric detectors, the observation and the measurement processes are defined not only by wave amplitudes of the electromagnetic oscillations observed, but also by the detector’s response to the squared amplitude of the wave averaged by detector time and space constants. The properties of the actual detectors define the space–time averages of radiant or luminous parameters of optical radiation and cause high-frequency filtration for observable radiation, leading to an evident lack of correlation between radiometric observation and the description of wave oscillations by electric and magnetic vector amplitudes (Rosenberg, Sov Phys Usp 20(1):55–79, 1977). Only in the electromagnetic field of a plane monochromatic wave, with the phase of its oscillation being an amplitude-invariable function of time, is it possible to construct a single-valued square correlation between the field intensity and its amplitude. Light waves emitted by sources are not strictly monochromatic owing to the finiteness of source dimensions and a great number of elementary dipoles affecting one another. Each light excitation made by a physical source is always given by a sum of Fourier decompositions to infinitely long individual monochromatic groups. Therefore, the wave amplitudes and phases of light in any actual wave field undergo certain irregular fluctuations within spectral width Δν of effective radiating frequency ν.


Beam Splitter Interference Pattern Grating Period Wave Plate Fringe Visibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 0.16
    A.A. Wolkenstein, E.V. Kuvaldin, Photoelectric Pulsed Photometry: Theory, Methods, and Instruments (Mashinostroenie, Leningrad, 1975)Google Scholar
  2. 0.27
    H.P. Baltes (ed.), Inverse source problems in optics (Springer, Berlin/New York, 1978)zbMATHGoogle Scholar
  3. 1.1
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edn. (Pergamon, Oxford, 1984); 7th ed. (Cambridge University Press, Cambridge, 2003)Google Scholar
  4. 1.2
    G.V. Rosenberg, The light ray: Contribution to the theory of the light field. Sov. Phys. Usp. 20(1), 55–79 (1977)ADSCrossRefGoogle Scholar
  5. 1.6
    R.W. Ditchburn, Light (Wiley, New York, 1963)zbMATHGoogle Scholar
  6. 3.1
    E. Wolf, Coherence and radiometry. J. Opt. Soc. Am. 68(1), 7–17 (1978)ADSCrossRefGoogle Scholar
  7. 3.2
    E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007)zbMATHGoogle Scholar
  8. 3.3
    M.J. Beran, G.B. Parrent Jr., Theory of Partial Coherence (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1974)Google Scholar
  9. 3.4
    L. Mandel, E. Wolf, Spectral coherence and the concept of cross-spectral purity. J. Opt. Soc. Am. 66(6), 529–535 (1976)ADSCrossRefMathSciNetGoogle Scholar
  10. 3.5
    E. Collett, E. Wolf, Is complete spatial coherence necessary for the generation of highly directional light beams? Opt. Lett. 2(2), 27–29 (1978)ADSCrossRefGoogle Scholar
  11. 3.6
    A. Walther, Radiometry and coherence, J. Opt. Soc. Am. part 1: 57(9) 1256–1259 (1967); part 2: 63(12) 1622–1623 (1973)Google Scholar
  12. 3.7
    M.J. Bastians, Transport equation for the Wigner distribution function in an inhomogeneous dispersive medium. Opt. Acta 26(11), 1333–1344 (1979)ADSCrossRefGoogle Scholar
  13. 3.8
    L.A. Apresyan, Yu.A. Kravtsov, Photometry and coherence: wave aspects of the theory of radiation transport. Sov. Phys. Usp. 27(4), 301–313 (1984)ADSCrossRefGoogle Scholar
  14. 3.9
    L. Mandel, E. Wolf, Coherence properties of fields. Rev. Mod. Opt. 37(4), 231–287 (1965)ADSCrossRefMathSciNetGoogle Scholar
  15. 3.10
    E. Wolf, New theory of radiative energy transfer in free electromagnetic fields. Phys. Rev. D 13(4), 869–886 (1976)ADSCrossRefGoogle Scholar
  16. 3.11
    E.W. Marchand, E. Wolf, Radiometry with sources of Any state of coherence. J. Opt. Soc. Am. 64(9), 1219–1226 (1974)ADSCrossRefGoogle Scholar
  17. 3.12
    A.T. Friberg, Effects of coherence in radiometry. Opt. Eng. 21(6), 927–936 (1982)Google Scholar
  18. 3.13
    E. Wolf, New theory of partial coherence in the space-frequency domain. Part I: Spectra and cross spectra of steady-state sources, J. Opt. Soc. Am. 72(3), 343–344 (1982); Part II: Steady -state fields and higher-order correlations, J. Opt. Soc. Am. A 3(1), 76–85 (1986)Google Scholar
  19. 3.14
    W.H. Carter, E. Wolf, Coherence properties of lambertian and Non-lambertian sources. J. Opt. Soc. Am. 65(9), 1967–1071 (1975)Google Scholar
  20. 3.15
    W.H. Carter, E. Wolf, Coherence and radiometry with quasi-homogeneous planar sources. J. Opt. Soc. Am. 67(6), 785–796 (1977)ADSCrossRefGoogle Scholar
  21. 3.16
    R.G. Littlejohn, R. Winston, Correction to classical radiometry. J. Opt. Soc. Am. A 10(9), 2024–2037 (1993)ADSCrossRefGoogle Scholar
  22. 3.17
    E. Wolf, Radiometric model for propagation of coherence. Opt. Lett. 19(23), 2024–2026 (1994)ADSCrossRefGoogle Scholar
  23. 3.18
    L. Mandel, E. Wolf, Optical coherence and quantum optics (Cambridge University Press, New York, 1995)CrossRefGoogle Scholar
  24. 3.19
    K. Yoshimori, K. Itoh, Interferometry and radiometry. J. Opt. Soc. Am. A 14(12), 3379–3387 (1997)ADSCrossRefGoogle Scholar
  25. 3.20
    K. Yoshimori, K. Itoh, On the generalized radiance function for a polychromatic field. J. Opt. Soc. Am. A 15(10), 2786–2787 (1998)ADSCrossRefMathSciNetGoogle Scholar
  26. 3.21
    K. Yoshimori, Radiometry and coherence in a nonstationary optical field. J. Opt. Soc. Am. A 15(10), 2730–2734 (1998)ADSCrossRefMathSciNetGoogle Scholar
  27. 3.25
    D.G. Fischer, S.A. Prahl, D.D. Duncan, Monte Carlo modeling of spatial coherence: free-space diffraction. J. Opt. Soc. Am. A 25(10), 2571–2581 (2008)ADSCrossRefGoogle Scholar
  28. 3.26
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)Google Scholar
  29. 3.27
    D.C. O’Shea, W.R. Callen, W.T. Rhodes, Introduction to Lasers and their Application (Addison-Wesley, London, 1976)Google Scholar
  30. 3.28
    J. Perina, Coherence of Light, 2nd edn. (Reidel Publishing Co., Dordrecht, 1985)Google Scholar
  31. 3.29
    A.A. Sychev, Study of spectral emittance of solid-state lasers, Proceedings FIAN, vol. 84 (Nauka, Moscow, 1975), pp. 3–61Google Scholar
  32. 3.30
    S.W. Director, R.A. Rohrer, Introduction to Systems Theory (McGraw-Hill, New York, 1971)Google Scholar
  33. 3.31
    I.S. Marshak (ed.), Pulsed Sources of Light (Energia, Moscow, 1978)Google Scholar
  34. 3.32
    A. Yariv, Quantum electronics, 3rd edn. (Wiley, New York, 1989)Google Scholar
  35. 3.33
    M.I. Griysnov, Generalized parameters of pulsed radiation, in Impulsnaya Photometria, vol. 6 (Mashinostroenie, Leningrad, 1979), pp. 35–41Google Scholar
  36. 3.34
    J.W. Goodman, Statistical Optics (Wiley, New York, 1985)Google Scholar
  37. 3.35
    M.A. Bukhshtab, Restricting the interference noise in optical measuring systems. J. Opt. Technol. 49(11), 677–678 (1982)Google Scholar
  38. 3.36
    V.K. Nikolaev, Khimichev YuV, About interference losses in transparent dielectric plates, vol. 10 (Electronic Techniques (UKS), Moscow, 1972), pp. 78–82Google Scholar
  39. 3.37
    M.A. Bukshtab, A.A. Wolkenstein, Interference errors of measurements using laser and pulsed quasi-monochromatic radiation and methods of their limitation, in Impulsnaya Photometria, vol. 8 (Mashinostroenie, Leningrad, 1984), pp. 5–15Google Scholar
  40. 3.38
    D.R. Hall, P.E. Jackson (eds.), The Physics and Technology of Laser Resonators (IOP Publishing (Adam Hilger), Bristol/New York, 1989)Google Scholar
  41. 3.39
    M.A. Bukshtab, Effects of spectral irregularities of radiation emitted by pulsed lamps in high-speed spectroradiometry, in Impulsnaya Photometria, vol. 9 (Mashinostroenie, Leningrad, 1986), pp. 77–84Google Scholar
  42. 3.40
    J.G. Edwards, Some factors affecting the pumping efficiency of optically pumped lasers. Appl. Opt. 6(5), 837–843 (1967)ADSCrossRefGoogle Scholar
  43. 3.41
    A. Holmes, Exact theory of retardation plates. J. Opt. Soc. Am. 54(9), 1115–1120 (1964)ADSCrossRefGoogle Scholar
  44. 3.42
    N.G. Theofanous, A.T. Arapoyianni, Effect of multiple reflections on retardation-based electro-optic measurements. J. Opt. Soc. Am. A 8(11), 1746–1754 (1991)ADSCrossRefGoogle Scholar
  45. 3.43
    M. Bukhshtab, The influence of surface reflections on computation and measurement of retardance, Meas. Sci. Technol.6(7), 910–920 (1995); erratum: 7, 1093 (1996)Google Scholar
  46. 3.44
    E.D. Palik (ed.), Handbook of Optical Constants of Solids, vol. 1 (Academic, New York, 1985)Google Scholar
  47. 3.45
    M.A. Bukhshtab, G.J. Mizell, Phase retardance and optical extinction symmetry measurements for some birefringent materials. in Proceedings of SPIE, vol. 1994, paper No. 12 (1993)Google Scholar
  48. 3.46
    E. Lommel, Die Beugungserscheinungen einer kreisrunden Oeffnung und eines kreisrunden Schirmschens theoretisch und experimentell Bearbeitet. Abh. Bayer. Akad. 15, 233–328 (1885)zbMATHGoogle Scholar
  49. 3.47
    E. Wolf, Light distribution near focus in an error-free diffraction image. Proc. R. Soc. Lond. Ser. A 204, 533–548 (1951)ADSCrossRefzbMATHGoogle Scholar
  50. 3.48
    J. Focke, Total illumination in an aberration-free diffraction image. Opt. Acta 3, 161–163 (1956)ADSCrossRefMathSciNetGoogle Scholar
  51. 3.49
    E.W. Marchand, E. Wolf, Boundary diffraction wave in the domain of the Rayleigh-Kirchoff diffraction theory. J. Opt. Soc. Am. 52(7), 761–767 (1962)ADSCrossRefMathSciNetGoogle Scholar
  52. 3.50
    W.R. Blevin, Diffraction losses in radiometry and photometry. Metrologia 6(4), 39–44 (1970)ADSCrossRefGoogle Scholar
  53. 3.51
    W.H. Steel, M. De, J.A. Bell, Diffraction corrections in radiometry. J. Opt. Soc. Am. 62(9), 1099–1103 (1972)ADSCrossRefGoogle Scholar
  54. 3.52
    L.P. Boivin, Diffraction corrections in radiometry: comparison of two different methods of calculation. Appl. Opt. 14(8), 2002–2009 (1975)ADSCrossRefGoogle Scholar
  55. 3.53
    L.P. Boivin, Diffraction corrections in the radiometry of extended sources. Appl. Opt. 15(5), 1204–1209 (1976)ADSCrossRefGoogle Scholar
  56. 3.54
    L.P. Boivin, Radiometric errors caused by diffraction from circular apertures: edge effects. Appl. Opt. 16(2), 377–384 (1976)ADSCrossRefGoogle Scholar
  57. 3.55
    L.P. Boivin, Reduction of diffraction errors in radiometry by means of toothed apertures. Appl. Opt. 17(20), 3323–3328 (1978)ADSCrossRefGoogle Scholar
  58. 3.56
    E.L. Shirley, R.U. Datla, Optimally toothed apertures for reduced diffraction. J. Res. Natl. Inst. Stand. Technol. 101(6), 745–753 (1996)CrossRefGoogle Scholar
  59. 3.57
    T. Gravelsaeter, J.J. Stamnes, Diffraction by circular apertures. 1: Method of linear phase and amplitude approximation. Appl. Opt. 21(20), 3644–3651 (1982)ADSCrossRefGoogle Scholar
  60. 3.58
    D.J. Butler, R. Kohler, G.W. Forbes, Diffraction effects in the radiometry of coherent beams. Appl. Opt. 35(13), 2162–2166 (1996)ADSCrossRefGoogle Scholar
  61. 3.59
    E.L. Shirley, Revised formulas for diffraction effects with point and extended sources. Appl. Opt. 37(28), 6581–6590 (1998)ADSCrossRefGoogle Scholar
  62. 3.60
    P. Edwards, M. McCall, Diffraction loss in radiometry. Appl. Opt. 42(25), 5024–5032 (2003)ADSCrossRefGoogle Scholar
  63. 3.61
    E.L. Shirley, Diffraction effects on broadband radiation: formulation for computing total irradiance. Appl. Opt. 43(13), 2609–2620 (2004)ADSCrossRefGoogle Scholar
  64. 3.62
    E.L. Shirley, Diffraction corrections in radiometry: spectral and total power and asymptotic properties. J. Opt. Soc. Am. A 21(10), 1895–1906 (2004)ADSCrossRefMathSciNetGoogle Scholar
  65. 3.63
    S. Engman, P. Lindblom, Blaze characteristics of echelle gratings. Appl. Opt. 21(23), 4356–4362 (1982)ADSCrossRefGoogle Scholar
  66. 3.64
    J. Harvey, E. Nevis, Angular grating anomalies: effects of finite beam size on wide-angle diffraction phenomena. Appl. Opt. 31(31), 6783–6788 (1992)ADSCrossRefGoogle Scholar
  67. 3.65
    M. Rousseau, J. Mathieu, Problems in Optics, J. Blaker (trans.) (Pergamon Press, New York, 1973), pp. 178–183Google Scholar
  68. 3.66
    M.G. Moharam, T.K. Gaylord, Diffraction analysis of dielectric surface-relief gratings, J. Opt. Soc. Am. 72(10), 1385–1392 (1982); T.K Gaylord, M.G. Moharam, Analysis and applications of optical diffraction by gratings, Proc. IEEE 73(5), 894–937 (1985)Google Scholar
  69. 3.67
    S.M. Al-Marzoug, R.J.W. Hodgson, Optimization of multilayer mirrors at 13.4-nm with more than two materials. Appl. Opt. 47(12), 2155–2160 (2008)ADSCrossRefGoogle Scholar
  70. 3.68
    D.M. Pai, K.A. Awada, Analysis of dielectric gratings of arbitrary profiles and thicknesses. Opt. Soc. Am. A 8(5), 755–762 (1991)ADSCrossRefGoogle Scholar
  71. 3.69
    T. Delort, D. Maystre, Finite-element method for gratings. J. Opt. Soc. Am. A 10(12), 2592–2601 (1993)ADSCrossRefGoogle Scholar
  72. 3.70
    M.A. Alonso, Exact description of free electromagnetic wave fields in terms of rays. Opt. Express 11(23), 3128–3135 (2003)ADSCrossRefGoogle Scholar
  73. 3.71
    J.-F. Lepage, N. McCarthy, Analysis of the diffractional properties of dual-period apodizing gratings: theoretical and experimental results. Appl. Opt. 43(17), 3504–3512 (2004)ADSCrossRefGoogle Scholar
  74. 3.72
    O. Mata-Mendez, J. Avendaño, F. Chavez-Rivas, Rigorous theory of the diffraction of Gaussian beams by finite gratings: TM polarization. J. Opt. Soc. Am. A 23(8), 1889–1896 (2006)ADSCrossRefGoogle Scholar
  75. 3.73
    D.C. Skigin, R.A. Depine, Diffraction by dual-period gratings. Appl. Opt. 46(9), 1385–1391 (2007)ADSCrossRefGoogle Scholar
  76. 3.74
    R. Tharaldsen, Rigorous Coupled-Wave Analysis (2008)Google Scholar
  77. 3.75
    M.A. Bukshtab, Maxima-shifting anomaly for step-function diffraction gratings in reflected light (2008)Google Scholar
  78. 3.76
    H. Kogelnick, Coupled wave theory for thick hologram gratings. Bell. Syst. Tech. J. 48, 2909–2947 (1969)CrossRefGoogle Scholar
  79. 3.77
    C.B. Burcardt, Diffraction of a plane wave at a sinusoidally stratified dielectric grating. J. Opt. Soc. Am. 56(11), 1502–1509 (1966)ADSCrossRefGoogle Scholar
  80. 3.78
    C.B. Burcardt, Efficiency of a dielectric grating. J. Opt. Soc. Am. 57(5), 601–603 (1967)ADSCrossRefGoogle Scholar
  81. 3.79
    F.G. Kaspar, Diffraction by thick, periodically stratified gratings with complex dielectric constant. J. Opt. Soc. Am. 63(1), 37–45 (1973)ADSCrossRefGoogle Scholar
  82. 3.80
    K. Knop, Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves. J. Opt. Soc. Am. 68(9), 1206–1210 (1978)ADSCrossRefGoogle Scholar
  83. 3.81
    K. Knop, Diffraction gratings for color filtering in the zero diffraction order. Appl. Opt. 17(22), 3598–3603 (1978)ADSCrossRefGoogle Scholar
  84. 3.82
    D.-K. Woo, K. Hane, S.-K. Lee, High order diffraction grating using v-shaped groove with refractive and reflective surfaces. Opt. Express 16(25), 21004–21011 (2008)ADSCrossRefGoogle Scholar
  85. 3.83
    T. von Lerber, M.W. Sigrist, Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing. Appl. Opt. 41(18), 3567–3575 (2002)ADSCrossRefGoogle Scholar
  86. 3.84
    T. von Lerber, H. Ludvigsen, A. Romann, Resonator based measurement technique for quantification of minute birefringence. Opt. Express 12(7), 1363–1371 (2004)ADSCrossRefGoogle Scholar
  87. 3.85
    P. Hlubina, D. Ciprian, Spectral-domain measurement of phase modal birefringence in polarization-maintaining fiber. Opt. Express 15(25), 17019–17024 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Michael A. Bukshtab ConsultingNorwalkUSA

Personalised recommendations