Skip to main content

Methods of Photometric and Radiometric Measurements

  • Chapter
  • First Online:
Applied Photometry, Radiometry, and Measurements of Optical Losses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 163))

Abstract

The ability of any flow of optical radiation to make energy actions is identified by the statistical average of the Poynting vector designated as the optical vector satisfying Eq. 1.3. The spatial, temporal, and spectral densities of the space- or time-averaged flow of radiation in the UV, visible, and IR optical-frequency domains identify the radiometric and photometric extents of radiation. Luminous actions of optical radiation are given by the vector, which forms luminous power and energy extents with the relative spectral luminous efficiency of radiation for the photopic vision of the human eye. In every case, a particular extent or parameter of radiation transfer, as intensity, radiant intensity, radiance or luminance, and radiant or luminous flux, can be identified via the spatial, surface, angular, or temporal density of radiation. The specifics of any measurement of a power or energy derivative for the radiation flow define the choice of the density of either radiant or luminous flux or the energy density of a beam at a given localized space and time region.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-94-007-2165-4_12

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-2165-4_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Fabry, Introduction Générale à la Photométrie, Edition de la revue d’optique theoretique et instrumentale, Paris (1927)

    Google Scholar 

  2. A.A. Gersun, Svetovoe Pole (GTTI, Moscow, 1936) (The Light Field, translated by P. Moon and G. Timoshenko, J. Math. Phys., 1939, Vol. 19, p. 51)

    Google Scholar 

  3. J. Strong, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, 1942)

    Google Scholar 

  4. M.M. Gurevich, Introduction to Photometry (Energia, Leningrad, 1968; 2nd edn., 1983)

    Google Scholar 

  5. R. Frieden, Probability, Statistical Optics and Data Testing: A Problem Solving Approach (Springer, New York, 1991)

    Book  Google Scholar 

  6. A. Sommerfeld, Optics (Academic, New York, 1954)

    MATH  Google Scholar 

  7. A.A. Gershun, Publications on Photometry and Light Measurements: Selected Papers on Photometry and Illumination Engineering (Gostekhizdat, Moscow, 1958)

    Google Scholar 

  8. M. Gurevich, Ãœbereine Rationelle Klassifikation der Lichtenstreuenden Medien. Phys. Z 31, 753 (1930)

    MathSciNet  Google Scholar 

  9. F. Benford, Radiation in a diffusing medium. J. Opt. Soc. Am. 36(9), 524–554 (1946)

    Article  ADS  Google Scholar 

  10. H.G. Heard, Laser Parameter Measurements Handbook (Wiley, New York, 1968)

    Google Scholar 

  11. S.R. Gunn, Calorimetric measurements of laser energy and power. J. Phys. E 6(2), 105–113 (1973)

    Article  ADS  Google Scholar 

  12. R. Ulbricht, Die Bestimmung der mittleren räumlichen Lichtintensität durch nur eine Messung. Electrotech Z. 21, 595–597 (1900)

    Google Scholar 

  13. A.C. Hardy, O.W. Pineo, The errors due to the finite size of holes and sample in integrating spheres. J. Opt. Soc. Am. 21(8), 504–506 (1931)

    Article  ADS  Google Scholar 

  14. F. Rotter, View into the integrating sphere through the observation window. Appl. Opt. 10(12), 2629–2638 (1971)

    Article  ADS  Google Scholar 

  15. Y. Ohno, Integrating sphere simulation: application to total flux scale realization. Appl. Opt. 33(13), 2637–2647 (1994)

    Article  ADS  Google Scholar 

  16. Y. Ohno, Realization of NIST luminous flux scale using an integrating sphere with an external source, Proceedings of the 23nd session of CIE (Commission Internationale de l’Éclairage), vol. 1, No. 1, Division 2, 1995, pp. 87–90

    Google Scholar 

  17. M.A. Bukhshtab, Method of determination of small scattering coefficients. J. Appl. Spectrosc. 46(5), 523–528 (1987)

    Article  ADS  Google Scholar 

  18. A.A. Wolkenstein, D.I. Andreev, B.I. Isaenko, Optical method of determining the light iIntensity, radiance and luminous flux. J. Tech. Phys. 22(12), 2026–2037 (1952)

    Google Scholar 

  19. D. Beaglehole, A sensitive single beam device for continuous reflectance or transmittance measurements. Appl. Opt. 7(11), 2218–2220 (1968)

    Article  ADS  Google Scholar 

  20. G.E. Pride, A reflectance measuring attachment for the Beckman spectrophotometer. J. Opt. Soc. Am. 36(9), 510–512 (1946)

    Article  ADS  Google Scholar 

  21. R.F. Weeks, Simple wide range specular reflectometer. J. Opt. Soc. Am. 48(11), 775–777 (1958)

    Article  ADS  Google Scholar 

  22. J.E. Shaw, W.R. Blevin, Instrument for the absolute measurement of direct spectral reflectances at normal incidence. J. Opt. Soc. Am. 54(3), 334–336 (1964)

    Article  ADS  Google Scholar 

  23. J.T. Gier, R.V. Dunkle, J.T. Bevans, Measurement of absolute spectral reflectivity from 1.0 to 15 microns. J. Opt. Soc. Am. 44(7), 558–562 (1954)

    Article  ADS  Google Scholar 

  24. J.S. Preston, G.W. Gordon-Smith, A new determination of luminance factor of magnesium oxide. Proc. Phys. Soc. B 65, 76 (1952)

    Article  ADS  Google Scholar 

  25. J.C. Maxwell, On the theory of compound colours, and the relations of the colours of the spectrum. Proc. R. Soc. Lond. 10, 404–409 (1859–1860)

    Article  Google Scholar 

  26. L.T. Troland, Report of committee on colorimetry for 1920–1921. J. Opt. Soc. Am. 6(8), 527–596 (1922)

    Article  ADS  Google Scholar 

  27. D.B. Judd, A general formula for the computation of colorimetric purity. J. Opt. Soc. Am. 21(11), 729–750 (1931)

    Article  ADS  Google Scholar 

  28. D.B. Judd, The 1931 I. C. I. Standard observer and coordinate system for colorimetry. J. Opt. Soc. Am. 23(10), 359–374 (1933)

    Article  ADS  Google Scholar 

  29. A.C. Hardy, Method of and Apparatus for Comparing and Recording of Radian Energy, U.S. Patent 1,806,198; 19 May 1931

    Google Scholar 

  30. R.M. Boynton, Theory of color vision. J. Opt. Soc. Am. 50(10), 929–944 (1960)

    Article  ADS  Google Scholar 

  31. R.M. Boynton, History and current status of a physiologically based system of photometry and colorimetry. J. Opt. Soc. Am. A 13(8), 1609–1621 (1996)

    Article  ADS  Google Scholar 

  32. G. Golz, D.I.A. MacLeod, Colorimetry for CRT displays. J. Opt. Soc. Am. A 20(5), 769–781 (2003)

    Article  ADS  Google Scholar 

  33. CIE Technical Report 15:2004, Colorimetry, 3rd edn., Vienna, 2004

    Google Scholar 

  34. D. Malacara, Color Vision and Colorimetry: Theory and Applications (SPIE, Bellingham, 2004)

    Google Scholar 

  35. A.R. Robertson, W.D. Wright, International comparison of working standards for colorimetry. J. Opt. Soc. Am. 55(6), 694–706 (1965)

    Article  ADS  Google Scholar 

  36. I. Nimeroff, Propagation of errors in spectrophotometric colorimetry, J. Opt. Soc. Am. 43(6), 531–533 (1953); Propagation of errors in tristimulus colorimetry, J. Opt. Soc. Am. 47(8), 697–702 (1957)

    Google Scholar 

  37. L.D. Taylor, D. Slocum, Method and spectrophotometer for exchanging color measurement and diagnostic information over a network, US Patent Appl. No. 2004/0233429 A1, 25 Nov 2004

    Google Scholar 

  38. Y. Ohno, J. Hardis, Four-color matrix method for correction of tristimulus colorimeters, parts 1, 2, in Proceedings of 5th, 6th IS&T Color Imaging Conferences, (1997), pp. 301–305, (1998) pp. 65–68

    Google Scholar 

  39. Y. Ohno, CIE fundamentals for color measurements, IS&T NIP16 conference, Vancouver, 2000

    Google Scholar 

  40. M.A. Bukshtab, Concept of absolute color measurements and absolute color spectrophotometry, 2007

    Google Scholar 

  41. A.H. Taylor, The measurement of the diffuse reflection factors and a new absolute reflectometer. J. Opt. Soc. Am. 4(1), 9–23 (1920)

    Article  ADS  Google Scholar 

  42. C.H. Sharp, W.F. Little, Measurements of reflection factors. Trans. Illum. Eng. Soc. 15(9), 802 (1920)

    Google Scholar 

  43. E. Karrer, The use of the Ulbricht sphere in measuring reflection and transmission. J. Opt. Soc. Am. 5(1), 96–120 (1921)

    Article  ADS  Google Scholar 

  44. J.A. Jacquez, H.F. Kuppenheim, Theory of integrating sphere. J. Opt. Soc. Am. 45(6), 460–470 (1955)

    Article  ADS  Google Scholar 

  45. B.J. Hisdal, Reflectance of perfect diffuse and specular samples in the integrating sphere, J. Opt. Soc. Am. 55(9) 1122–1128 (1965); Reflectance of nonperfect surfaces in the integrating sphere, J. Opt. Soc. Am. 55(10), 1155–1160 (1965)

    Google Scholar 

  46. D.G. Goebel, Generalized integrating-sphere theory. Appl. Opt. 6(1), 125–128 (1967)

    Article  ADS  Google Scholar 

  47. M.W. Finkel, Integrating sphere theory. Optics Commun. 2(2), 25–28 (1970)

    Article  ADS  Google Scholar 

  48. H.L. Tardy, Flat-sample and limited-field effects in integrating sphere measurements. J. Opt. Soc. Am. A 5(2), 241–245 (1988)

    Article  ADS  Google Scholar 

  49. H.L. Tardy, Matrix method for integrating-sphere calculations. J. Opt. Soc. Am. A 8(9), 1411–1418 (1991)

    Article  ADS  Google Scholar 

  50. M.A. Bukshtab, Measurement techniques for high reflectance and low scattering of laser mirrors, Ph.D. Dissertation, The Vavilov’ State Optical Institute, Leningrad, 1983

    Google Scholar 

  51. Absolute Methods for Reflection Measurements, CIE Publication TC-2.3, 1979, No. 44

    Google Scholar 

  52. D.K. Edwards, J.T. Gier, K.E. Nelson, B.D. Roddick, Integrating sphere for imperfectly diffuse samples. J. Opt. Soc. Am. 51(11), 1279–1285 (1961)

    Article  ADS  Google Scholar 

  53. V.P. Rvachev, M.Yu. Sakhnovskii, Theory and application of an integrating photometer for the study of objects with arbitrary scattering functions. Opt. Spectrosc. 18(3), 274–278 (1965)

    ADS  Google Scholar 

  54. P.F. O’Brien, Network representation of the integrating sphere. J. Opt. Soc. Am. 45(5), 343–345 (1956)

    Article  MathSciNet  Google Scholar 

  55. M.A. Bukhshtab, Improving the accuracy of absolute measurements in photometric sphere. Opt. Spectrosc. 54(1), 90–93 (1983)

    ADS  Google Scholar 

  56. M.A. Bukshtab, Spectrally-nonselective method of absolute reflectance measurements, in Impulsnaya Photometria, vol. 7 (Mashinostroenie, Leningrad, 1981), pp. 22–24

    Google Scholar 

  57. M.A. Bukhshtab, G.M. Gorodinskii, Photometric sphere having constant ray paths. J. Opt. Technol. 49(6), 396–397 (1982)

    Google Scholar 

  58. J.G. Symons, E.A. Christie, M.K. Peck, Integrating sphere for solar transmittance measurement of planar and nonplanar samples. Appl. Opt. 21(15), 2827–2832 (1982)

    Article  ADS  Google Scholar 

  59. J. Kessel, Transmittance measurements in the integrating sphere. Appl. Opt. 25(16), 2752–2756 (1986)

    Article  ADS  Google Scholar 

  60. A. Roos, C.G. Ribbing, Interpretation of integrating sphere signal output for non-Lambertian samples. Appl. Opt. 27(18), 3833–3837 (1988)

    Article  ADS  Google Scholar 

  61. A. Roos, Interpretation of integrating sphere signal output for nonideal transmitting samples. Appl. Opt. 30(4), 468–474 (1991)

    Article  ADS  Google Scholar 

  62. K. Grandin, A. Roos, Evaluation of correction factors for transmittance measurements in single beam integrating spheres. Appl. Opt. 33(25), 6098–6104 (1994)

    Article  ADS  Google Scholar 

  63. J.W. Pickering, C.J.M. Moes, H.J.C. Sterenborg, S.A. Prahl, M.J.C. van Gemert, Two integrating spheres with an intervening scattering sample. J. Opt. Soc. Am. A 9(4), 621–631 (1992)

    Article  ADS  Google Scholar 

  64. J.W. Pickering, S.A. Prahl, N. van Wieringen, J.F. Beek, H.J.C.M. Sterenborg, M.J.C. van Gemert, Double-integrating-sphere system for measuring of optical properties of tissue. Appl. Opt. 32(4), 399–410 (1993)

    Article  ADS  Google Scholar 

  65. A.H. Taylor, Errors in reflectometry. J. Opt. Soc. Am. 25(2), 51–52 (1935)

    Article  ADS  Google Scholar 

  66. C.C. Habeger, Angular radiance variation in an integrating sphere. J. Opt. Soc. Am. A 11(7), 2130–2136 (1994)

    Article  ADS  Google Scholar 

  67. L. Levi, A screenless integrating sphere. Appl. Opt. 6(6), 1138 (1967)

    Article  ADS  Google Scholar 

  68. H.L. Tardy, Flux concentrators in integrating sphere experiments: potential for increased detector signal. Appl. Opt. 24(22), 3914–3916 (1985)

    Article  ADS  Google Scholar 

  69. K.A. Snail, L.M. Hanssen, Integrating sphere designs with isotropic throughput. Appl. Opt. 28(10), 1793–1799 (1989)

    Article  ADS  Google Scholar 

  70. D.B. Chenault, K.A. Snail, L.M. Hanssen, Improved integrating-sphere throughput with a lens and nonimaging concentrator. Appl. Opt. 34(34), 7959–7964 (1995)

    Article  ADS  Google Scholar 

  71. L.M. Hanssen, Effects of restricting the detector field of view when using integrating spheres. Appl. Opt. 28(11), 2097–2103 (1989)

    Article  ADS  Google Scholar 

  72. L.M. Hanssen, Effects of non-Lambertian surfaces on integrating sphere measurements. Appl. Opt. 35(19), 3597–3606 (1996)

    Article  ADS  Google Scholar 

  73. J.E. Clare, Comparison of four analytic methods for the calculation of irradiance in integrating spheres. J. Opt. Soc. Am. A 15(12), 3086–3096 (1998)

    Article  ADS  Google Scholar 

  74. B.G. Crowther, Computer modeling of integrating spheres. Appl. Opt. 35(30), 5880–5886 (1996)

    Article  ADS  Google Scholar 

  75. M. Szylowski, M. Mossman, D. Barclay, L. Whitehead, Novel fiber-based integrating sphere for luminous flux measurements, Rev. Sci. Instrum. Article 063102 77 (2006)

    Google Scholar 

  76. B. Rizk, Private life of an integrating sphere: the radiant homogeneity of the descent imager–spectral radiometer calibration sphere. Appl. Opt. 45(13), 2095–2101 (2001)

    Article  ADS  Google Scholar 

  77. A.V. Prokhorov, S.N. Mekhontsev, L. Hanssen, Monte Carlo modeling of an integrating sphere reflectometer. Appl. Opt. 42(19), 3832–3842 (2003)

    Article  ADS  Google Scholar 

  78. D. Hidović-Rowe, J.E. Rowe, M. Lualdi, Markov models of integrating spheres for hyperspectral imaging. Appl. Opt. 45(21), 5248–5256 (2006)

    Article  ADS  Google Scholar 

  79. C.K. Gatebe, J.J. Butler, J.W. Cooper, M. Kowalewski, M.D. King, Characterization of errors in the use of integrating-sphere systems in the calibration of scanning radiometers. Appl. Opt. 46(31), 7640–7651 (2007)

    Article  ADS  Google Scholar 

  80. R.L. Lucke, Lambertian radiance and transmission of an integrating sphere. Appl. Opt. 46(28), 6966–6970 (2007)

    Article  ADS  Google Scholar 

  81. S. Potvin, J. Genest, Reducing the effect of integrating sphere speckle when characterizing the instrument line shape of a Fourier-transform hyperspectral imager. Appl. Opt. 48(30), 5849–5852 (2009)

    Article  ADS  Google Scholar 

  82. R.L. Lucke, J. Grun, C. Manka, S. Nikitin, Specular integrating tube for scattered-light spectroscopy. Appl. Opt. 49(21), 4063–4066 (2010)

    Article  ADS  Google Scholar 

  83. S. Park, S.-N. Park, D.-H. Lee, Correction of self-screening effect in integrating sphere-based measurement of total luminous flux of large-area surface-emitting light sources. Appl. Opt. 49(20), 3831–3839 (2010)

    Article  ADS  Google Scholar 

  84. R. Daniel, R. Almog, Y. Sverdlov, S. Yagurkroll, S. Belkin, Y. Shacham-Diamand, Development of a quantitative optical biochip based on a double integrating sphere system that determines absolute photon number in bioluminescent solution: application to quantum yield scale realization. Appl. Opt. 48(17), 3216–3224 (2009)

    Article  ADS  Google Scholar 

  85. D. Sheffer, U.P. Oppenheim, A.D. Devir, Absolute reflectometer for the mid infrared region. Appl. Opt. 29(1), 129–132 (1990); Absolute measurements of diffuse reflectance in the α°/d configuration. Appl. Opt. 30(22), 3181–3183 (1991)

    Google Scholar 

  86. C.G. Venkatesh, R.S. Eng, A.W. Mantz, Tunable diode laser-integrating sphere systems: a study of their output intensity characteristics. Appl. Opt. 19(10), 1704–1710 (1980)

    Article  ADS  Google Scholar 

  87. J.C. Zwinkels, D.S. Gignak, Automated high precision variable aperture for spectrophotometer linearity testing. Appl. Opt. 30(13), 1678–1687 (1991)

    Article  ADS  Google Scholar 

  88. ASTM E 313–00: Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bukshtab .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bukshtab, M. (2012). Methods of Photometric and Radiometric Measurements. In: Applied Photometry, Radiometry, and Measurements of Optical Losses. Springer Series in Optical Sciences, vol 163. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2165-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2165-4_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2164-7

  • Online ISBN: 978-94-007-2165-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics