Advertisement

Radiometric and Photometric Quantities and Notions

  • Michael Bukshtab
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 163)

Abstract

The energy conservation law for any electromagnetic field implies, that the time derivative \( {{{\partial Q}} \left/ {{\partial t}} \right.} \) of the field energy for optical radiation, which ranges from a wavelength as short as 1 nm to one as long as 1 mm, when propagating in a homogeneous, isotropic, and low-absorbing medium whose properties satisfy the material equations D = εE, B = μH, J = σE and whose elements are in a steady position or in slow motion, is [1.1]:
$$ \frac{{dQ}}{{dt}} = - \frac{{d\Pi }}{{dt}} - \Lambda - \int\limits_{\mathbf{A}} {{\mathbf{S}} \bullet \begin{array}{*{20}{c}} {{\mathbf{r}}\begin{array}{*{20}{c}} {dA} \\ \end{array} } \\ \end{array} } $$
(1.1)
where Π is the work done for the travel time t; Λ is the total loss, caused by resistive dissipation of energy Q, if the medium is a conductor; S is the Poynting vector; r is the outward normal unit vector to any arbitrary boundary surface A situated far away from a source of the field; E and H are the electric and the magnetic vectors; D is the vector of electric displacement, B is the vector of magnetic induction; ε is the dielectric constant (permittivity), μ is the magnetic permeability, and σ is the specific conductivity of the medium. The integral in Eq. 1.1 identifies the flow of energy crossing the boundary surface A reached by the optical wave. Thus, when dealing with a transfer of energy of optical radiation in the absence of moving elements or conductors, the space-time derivative in Eq. 1.1 represents the flow of optical energy crossing such a boundary surface A per unit of time.

Keywords

Light Beam Solid Angle Optical Radiation Luminous Intensity Bidirectional Reflectance Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 0.1
    M. Bouger, Traité d’Optique sur la Gradation de la Lumière, Académie Royale des Sciences, A. Paris, MDCCLX (1760) - see also: M. Bouger, Optical tractât on grading light, with commentaries by A.A. Gershun, translated from French to Russian by N.A. Tosltoy and P.P. Pheophilov under editorship of A.A. Gershun, published by Academy of Sciences of USSR, Leningrad (1950)Google Scholar
  2. 0.2
    J.H. Lambert, Photometria sive de mensura et gradibus luminus, colorum et umbrae (Klett, Augsburg, 1760)Google Scholar
  3. 0.3
    A.J. Fresnel, Oevres Complètes, vol. 10 (Paris, 1866), pp. 640–648Google Scholar
  4. 0.4
    C. Fabry, Introduction Générale à la Photométrie, Edition de la revue d’optique theoretique et instrumentale, Paris (1927)Google Scholar
  5. 0.5
    A.A. Gersun, Svetovoe Pole (GTTI, Moscow, 1936) (The Light Field, translated by P. Moon and G. Timoshenko, J. Math. Phys., 1939, Vol. 19, p. 51)Google Scholar
  6. 0.6
    J. Strong, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, 1942)Google Scholar
  7. 0.7
    J.W.T. Walsh, Photometry, 3rd edn. (Constable, London, 1958; Dover, New York, 1965)Google Scholar
  8. 0.8
    G. Bauer, Strahlungsmessung im optichen Spektralbereich (Vieeweg, Braunschweig, 1962) (Measurements of Optical Radiation, translated by K.S. Ankersmit, Focal Press, New York, 1965)Google Scholar
  9. 0.9
    P.M. Tikhodeev, Light Measurements (Photometria) (Gosenergoizdat, Moscow, 1962)Google Scholar
  10. 0.10
    A.A. Wolkenstein, Visual Photometry of Low Luminance (Energia, Moscow, 1965)Google Scholar
  11. 0.11
    R.A. Sapoznikov, Theoretical Photometry (Moscow, 1967)Google Scholar
  12. 0.12
    M.M. Gurevich, Introduction to Photometry (Energia, Leningrad, 1968; 2nd edn., 1983)Google Scholar
  13. 0.13
    R.A. Smith, F.E. Jones, R.P. Chasmar, The Detection and Measurement of Infrared Radiation, 2nd edn. (Clarendon Press, Oxford, 1968)Google Scholar
  14. 0.14
    H.A.A. Keitz, Light Calculations and Measurements, 2nd edn. (St. Martins Press, New York, 1971)Google Scholar
  15. 0.15
    A. Stimson, Photometry and Radiometry for Engineers (Wiley, New York, 1974)Google Scholar
  16. 0.16
    A.A. Wolkenstein, E.V. Kuvaldin, Photoelectric Pulsed Photometry: Theory, Methods, and Instruments (Mashinostroenie, Leningrad, 1975)Google Scholar
  17. 0.17
    C.L. Wyatt, Radiometric Calibration: Theory and Methods (Academic, Orlando, 1978)Google Scholar
  18. 0.18
    F. Grum, R. J. Becherer, Optical Radiation Measurements. Radiometry, vol 1 (Academic Press, New York, 1979)Google Scholar
  19. 0.19
    A.F. Kotyuk (ed.), Measurements of Energy Extents of Laser Radiation (Radio-Sviaz, Moscow, 1981); A.F. Kotyuk, B.M. Stepanov (ed.), Measurements of Spectral-Frequency and Correlation Parameters of Laser Radiation, (Radio-Sviaz, Moscow, 1982)Google Scholar
  20. 0.20
    R.W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983)Google Scholar
  21. 0.21
    M.A. Bukshtab, Measurements of Low Optical Losses (Energoatomizdat, Leningrad, 1988)Google Scholar
  22. 0.22
    F. Hengsberger (ed.), Absolute Radiometry: Electrically Calibrated Thermal Detectors of Optical Radiation (Academic, New York, 1989)Google Scholar
  23. 0.23
    W.J. Smith, Modern Optical Engineering, 2nd edn. (McGraw-Hill, New York, 1990)Google Scholar
  24. 0.24
    R. Frieden, Probability, Statistical Optics and Data Testing: A Problem Solving Approach (Springer, New York, 1991)CrossRefGoogle Scholar
  25. 0.25
    Impulsnaya photometria. Publications of conferences for pulsed photometry and radiometry, vols 1–9, Mashinostroenie, Leningrad, 1969–1986Google Scholar
  26. 0.26
    A.T. Friberg (ed.), Selected Papers on Coherence and Radiometry, vol. MS 69 (SPIE Optical Engineering Press, Bellingham, 1993)Google Scholar
  27. 0.27
    H.P. Baltes (ed.), Inverse source problems in optics (Springer, Berlin/New York, 1978)zbMATHGoogle Scholar
  28. 0.28
    The Basis of Physical Photometry, 2nd ed., Commission International de l’Éclairage, Publication No. 18.2, Central Bureau of the CIE, Vienna, 1983Google Scholar
  29. 0.29
    C.L. Wyatt, Radiometric System Design (Macmillan, New York, 1987)Google Scholar
  30. 0.30
    D.P. DeWitt, G.D. Nutter, Theory and Practice of Radiation Thermometry (Wiley, New York, 1988)CrossRefGoogle Scholar
  31. 0.31
    L.B. Wolff, S.A. Shafer, G.E. Healey (eds.), Physics-based vision: Principles and practice, radiometry (Jones and Bartlett, Boston, 1992)Google Scholar
  32. 0.32
    W.R. McCluney, Introduction to Radiometry and Photometry (Artech House, Norwood, 1994)Google Scholar
  33. 0.33
    M. Bass (ed.), Handbook of Optics, vol. I: Fundamentals, Techniques, and Design; vol. II: Devices, Measurements, and Properties, 2nd edn. (McGraw-Hill, New York, 1995)Google Scholar
  34. 0.34
    E. Wolf (ed.), Progress in Optics, vol. XXXVI (Elsevier, Amsterdam, 1996)Google Scholar
  35. 0.35
    E.L. Dereniak, G.D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996)Google Scholar
  36. 0.36
    C. DeCusatis (ed.), Handbook of Applied Photometry (AIP Press, Woodbury, 1997)Google Scholar
  37. 0.37
    W.L. Wolfe, Introduction to Radiometry, Tutorials in Optical Engineering, vol. TT29 (SPIE, Bellingham, 1998)CrossRefGoogle Scholar
  38. 0.38
    K.J. Gasvic, Optical Metrology, 3rd edn. (Wiley, New York, 2002)CrossRefGoogle Scholar
  39. 0.39
    G.H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter (Cambridge University Press, Cambridge, 1994; 2nd edn. 2003)Google Scholar
  40. 0.40
    A.C. Parr, R.U. Datla, J.L. Gardner (eds.), Optical Radiometry: Experimental Methods in the Physical Sciences (Academic, San Diego, 2005)Google Scholar
  41. 0.41
    A. Valberg, Light Vision Color (Wiley, Chichester, 2005)Google Scholar
  42. 0.42
    R.G.W. Brown, J.P. Dakin (eds.), Handbook of Optoelectronics (Taylor & Francis, Abingdon, 2006)Google Scholar
  43. 0.43
    Handbook of Optical Systems, Volume 1, Fundamentals of Technical Optics, edited by H. Gross, Wiley, New York, 2005; Handbook of Optical Systems, Volume 4, Survey of Optical Instruments, edited by H. Gross, F. Blechinger, and B. Achtner, Wiley, New York, 2008.Google Scholar
  44. 0.44
    J. Laane (ed.), Frontiers of Molecular Spectroscopy (Elsevier, Amsterdam, 2008)Google Scholar
  45. 0.45
    J.M. Palmer, B.G. Grant, The Art of Radiometry (SPIE Press, Bellingham, 2009)CrossRefGoogle Scholar
  46. 1.1
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edn. (Pergamon, Oxford, 1984); 7th ed. (Cambridge University Press, Cambridge, 2003)Google Scholar
  47. 1.2
    G.V. Rosenberg, The light ray: Contribution to the theory of the light field. Sov. Phys. Usp. 20(1), 55–79 (1977)ADSCrossRefGoogle Scholar
  48. 1.3
    A. Sommerfeld, Optics (Academic, New York, 1954)zbMATHGoogle Scholar
  49. 1.4
    A.A. Gershun, Publications on Photometry and Light Measurements: Selected Papers on Photometry and Illumination Engineering (Gostekhizdat, Moscow, 1958)Google Scholar
  50. 1.5
    Principles of Light Measurements, CIE Publication No. 18, 1970; International Lighting Vocabulary, CIE Publication No. 17, 1970; International Electrotechnical Vocabulary, Chapter 845, Lightning, 1982.Google Scholar
  51. 1.6
    R.W. Ditchburn, Light (Wiley, New York, 1963)zbMATHGoogle Scholar
  52. 1.7
    F.A. Jenkins, H.E. White, Fundamentals of Optics, 4th edn. (McGraw-Hill, New York, 1976)Google Scholar
  53. 1.8
    G.S. Landsberg, Optics (Nauka, Moscow, 1976)Google Scholar
  54. 1.9
    G.G. Stokes, On the intensity of the light reflected from and transmitted through a pile of plates. Proc. R. Soc. Lond. 11, 545–556 (1862)CrossRefGoogle Scholar
  55. 1.10
    Rayleigh, 3rd Baron, On the reflection of light from regularly stratified medium, Proc. R. Soc. A 93, 565–577 (1917)Google Scholar
  56. 1.11
    T. Smith, The treatment of reflection as a special case of refraction. Trans. Opt. Soc. 27, 312–323 (1925)CrossRefGoogle Scholar
  57. 1.12
    M. Gurevich, Übereine Rationelle Klassifikation der Lichtenstreuenden Medien. Phys. Z 31, 753 (1930)MathSciNetGoogle Scholar
  58. 1.13
    F. Benford, Radiation in a diffusing medium. J. Opt. Soc. Am. 36(9), 524–554 (1946)ADSCrossRefGoogle Scholar
  59. 1.14
    L.B. Tuckerman, On the intensity of the light reflected from or transmitted through a pile of plates. J. Opt. Soc. Am. 37(10), 818–825 (1947)ADSCrossRefMathSciNetGoogle Scholar
  60. 1.15
    P. Kubelka, New contributions to the optics of intensely light scattering materials. Part 1, J. Opt. Soc. Am. 38(5), 448–457; errata 38, 1067Google Scholar
  61. 1.16
    Abelés, Recherches sur la propagation des ondes électromagn’etiques sinusoïdales dans les milieux stratifiés. Applications aux couches minces, Ann. Phys. (Paris) 5, 596–640 (1950)Google Scholar
  62. 1.17
    A.F. Huxley, A theoretical treatment of the reflexion of light by multilayer structures. J. Exp. Biol. 48, 227–245 (1968)Google Scholar
  63. 1.18
    H.G. Olf, Stokes’s pile of plates revisited. J. Opt. Soc. Am. A 5(10), 1620–1625 (1988)ADSCrossRefGoogle Scholar
  64. 1.19
    A. Perot, C. Fabry, Méthode interfirentielle pour la mesure des longeurs d’onde dans le spectre solaire. C. R. Acad. Sci. 131, 700 (1900)Google Scholar
  65. 1.20
    A. Kastler, Atomes a I’Interieur d’un Interferometre Perot-Fabry. Appl. Opt. 1(1), 17–24 (1962)ADSCrossRefGoogle Scholar
  66. 1.21
    F. Gires, P. Tournois, Interféromètre utilisable pour la compression d’impulsions lumineuses modulées en fréquence. C. R. Acad. Sci. 258(6), 6112–6115 (1964)Google Scholar
  67. 1.22
    F.E. Nicodemus, Directional reflectance and emissivity of an opaque surface. Appl. Opt. 4(7), 767–773 (1965)ADSCrossRefGoogle Scholar
  68. 1.23
    R.C. Jones, Terminology in photometry and radiometry. J. Opt. Soc. Am. 53(11), 1314–1315 (1963)CrossRefGoogle Scholar
  69. 1.24
    D.B. Judd, Terms, definitions, and symbols in reflectometry. J. Opt. Soc. Am. 57(4), 445–452 (1967)ADSCrossRefGoogle Scholar
  70. 1.25
    W.H. Steel, Luminosity, throughput, or etendue? Appl. Opt. 13(4), 704–705 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Michael A. Bukshtab ConsultingNorwalkUSA

Personalised recommendations