Submarine Mass Wasting Off Southern Central Chile: Distribution and Possible Mechanisms of Slope Failure at an Active Continental Margin

  • David VölkerEmail author
  • Jacob Geersen
  • Jan H. Behrmann
  • Willhelm R. Weinrebe
Conference paper
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 31)


Around 5–6% of the convergent continental margin of Southern Central Chile (33–42°S) is shaped by a variety of submarine mass wasting processes. We use swath bathymetric data covering >90% of the continental slope to map and investigate mass wasting-related seafloor features. In total, 62 submarine landslides are found that we separate into four categories (slides related to canyons, slides on open slopes, lower slope collapses and giant slope failures) with different failure mechanisms, preconditioning factors and time scales.


Submarine landslide Mass-failure Mass-transport Slope failure Active continental margin 


  1. Anasetti A, Krastel S, Weinrebe W, Klaucke I, Bialas J (2010) Detailed analysis of the Valdes slide: a landward facing slope failure off Chile. In: Abstract EGU2010-13497 presented at 2010 general assembly of the EGU, Vienna, 02–07 May 2010Google Scholar
  2. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171(3):329–334CrossRefGoogle Scholar
  3. Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chilean margin. Tectonics 16:489–503CrossRefGoogle Scholar
  4. Chadwell CD, Lonsdale P, Kluesner JW, Sweeney AD, Weinrebe W, Behrmann JH, Diaz-Naveas JL, Contreras Reyes E (2010) An examination of “before” and “after” bathymetry for uplift of the sea floor following the Feb. 27, 2010 Maule, Chile Earthquake. Abstract G33A-0851 presented at 2010 fall meeting, AGU, San Francisco, 13–17 Dec 2010Google Scholar
  5. Contardo X, Cembrano J, Jensen A, Díaz-Naveas J (2008) Tectono-sedimentary evolution of marine slope basins in the Chilean forearc (33°30′–36°50′S): insights into their link with the subduction process. Tectonophysics 459(1–4):206–218CrossRefGoogle Scholar
  6. Contreras-Reyes E, Grevemeyer I, Flueh ER, Reichert C (2008) Upper lithospheric structure of the subduction zone offshore of southern Arauco Peninsula, Chile, at ∼38°S. J Geophys Res 113:B07303CrossRefGoogle Scholar
  7. Geersen J, Behrmann JH, Völker D, Krastel S, Ranero CR, Diaz-Naveas J, Weinrebe RW (2011) Active tectonics of the South Chilean marine forearc (35°S–40°S). Tectonics. doi: 10.1029/2010TC002777Google Scholar
  8. Geersen J, Völker D, Behrmann JH, Reichert C, Krastel S (submitted) Pleistocene giant slope failures offshore Arauco Peninsula, Southern Chile. J Geol SocGoogle Scholar
  9. Harders R, Kutterolf S, Hensen C, Moerz T, Brueckmann W (2010) Tephra layers: a controlling factor on submarine translational sliding? Geochem Geophys Geosyst 11(5):Q05S23CrossRefGoogle Scholar
  10. Hühnerbach V, Masson DG (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213(1–4):343–362CrossRefGoogle Scholar
  11. Linke, P. and scientific cruise participants (2011). FS SONNE Fahrtbericht/Cruise Report SO210 ChiFlux - Identification and investigation of fluid flux, mass wasting and sediments in the forearc of the central Chile subduction zone, Valparaíso-Valparaíso, 23.09.-01.11.2010. IFM-GEOMAR Reports, 44, 112 pp., doi: 10.3289/ifm560geomar_rep_44_2011Google Scholar
  12. Lomnitz C (1970) Major earthquakes and tsunamis in Chile during the period 1535 to 1955. Int J Earth Sci 59(3):938–960. doi: 10.1007/BF02042278Google Scholar
  13. Melnick D, Echtler HP (2006) Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology 34(9):709–712CrossRefGoogle Scholar
  14. Melnick D, Bookhagen B, Strecker MR, Echtler HP (2009) Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile. J Geophys Res 114:B01407. doi: 10.1029/2008JB005788 CrossRefGoogle Scholar
  15. Rehak K, Strecker MR, Echtler HP (2008) Morphotectonic segmentation of an active forearc, 37°–41°S, Chile. Geomorphology 94(1–2):98–116CrossRefGoogle Scholar
  16. Völker D (2009) A simple and efficient GIS tool for volume calculations of submarine landslides. Geo Mar Lett. doi: 10.1007/s00367-009-0176-0Google Scholar
  17. Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru-Chile Trench off Central Chile. In: Oncken O et al (eds) The Andes – active subduction orogeny, Frontiers in earth sciences. Springer, Berlin/Heidelberg, pp 193–216Google Scholar
  18. Völker D, Weinrebe W, Behrmann JH, Bialas J, Klaeschen D (2009) Mass wasting at the base of the south central Chilean continental margin: the Reloca Slide. Adv Geosci 22:155–167CrossRefGoogle Scholar
  19. Völker D, Scholz F, Geersen J (submitted) Recent submarine slide in the rupture area of the 27 February 2010 Maule earthquake offshore Chile. Mar GeoGoogle Scholar
  20. Weinrebe W, Behrmann JH, Chadwell CD, Lonsdale P, Sweeney AD, Diaz-Naveas JL, Contreras Reyes E (2010) High-resolution seafloor bathymetry of the rupture area “before” and “after” the magnitude 8.8 Chilean earthquake of 2010. Abstract G33A-0852 presented at 2010 fall meeting, AGU, San Francisco, 13–17 Dec 2010Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • David Völker
    • 1
    Email author
  • Jacob Geersen
    • 1
  • Jan H. Behrmann
    • 1
  • Willhelm R. Weinrebe
    • 1
  1. 1.SFB574, IFM-GEOMAR Leibniz Institute for Marine SciencesUniversity of KielKielGermany

Personalised recommendations