Reconstructing Site-Formation Processes at GBY—The Experiments

Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


A set of experiments were initiated to gain qualitative insight into the processes of bone modification and to assess the timing of the biostratonomic chronology at Gesher Benot Ya‘aqov (GBY). Based on the results of the experiments, models for the internal operational sequence of an abrasional process due to water movement and trampling are presented. These models help to disentangle the taphonomic history at the site and have tremendous implications for future studies in bone taphonomy.


Bone Surface Anterior Face Distal Metaphyses Posterior Face Taphonomic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andrews, P., & Cook, J. (1985). Natural modifications to bones in a temperate setting. Man, 20, 675–691.CrossRefGoogle Scholar
  2. Ashkenazi, S., Motro, U., Goren-Inbar, N., Bitton, R., & Rabinovich, R. (2005). New morphometric parameters for assessment of body size and population structure in freshwater fossil crab assemblage from the Pleistocene site of Gesher Benot Ya‘aqov (GBY), Israel. Journal of Archaeological Science, 32, 675–689.CrossRefGoogle Scholar
  3. Behrensmeyer, A. K. (1975a). The taphonomy and paleoecology of Plio Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin Museum of Comparative Zoology, 146, 473–578.Google Scholar
  4. Behrensmeyer, A. K. (1975b). Taphonomy and paleoecology in the hominid fossil record. Yearbook of Physical Anthropology, 19, 36–50.Google Scholar
  5. Behrensmeyer, A. K. (1978). Taphonomic and ecological information from bone weathering. Paleobiology, 4, 150–162.Google Scholar
  6. Behrensmeyer, A. K., & Kidwell, S. M. (1985). Taphonomy’s contribution to paleobiology. Paleobiology, 11, 105–119.Google Scholar
  7. Binford, L. R. (1981). Bones: Ancient man and modern myths. New York: Academic Press.Google Scholar
  8. Blasco, R., Rosell, J., Férnandez Peris, J., Cáceres, I., & María Vergès, J. (2008). A new element of trampling: An experimental application on the level XII faunal record of Bolomor Cave (Valencia, Spain). Journal of Archaeological Science, 35, 1605–1618.CrossRefGoogle Scholar
  9. Blumenschine, R. J. (1986). Early hominid scavenging opportunities. BAR International Series, Vol. 283. Oxford: Archaeopress.Google Scholar
  10. Blumenschine, R. J. (1995). Percussion marks, tooth marks, and timing of hominid and carnivore access to long bones at FLK Zinjanthropus Olduvai Gorge, Tanzania. Journal of Human Evolution, 29, 21–51.CrossRefGoogle Scholar
  11. Blumenschine, R. J., & Selvaggio, M. M. (1988). Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature, 333, 763–765.CrossRefGoogle Scholar
  12. Blumenschine, R. J., & Selvaggio, M. M. (1991). On the marks of marrow bone processing by hammerstones and hyaenas: Their anatomical patterning and archaeological implications. In J. D. Clark (Ed.), Cultural beginnings: Approaches to understanding early hominid life-ways in the African savanna (pp. 17–32). Bonn: Habelt Verlag.Google Scholar
  13. Brain, C. K. (1967a). Bone weathering and the problem of bone pseudo-tools. South African Journal of Science, 63, 97–99.Google Scholar
  14. Brain, C. K. (1967b). Hottentot food remains and their bearing on the interpretation of fossil bone assemblages. Scientific Papers of the Namib Desert Research Station, 32, 1–7.Google Scholar
  15. Brain, C. K. (1981). The Hunters or the hunted? An introduction to African cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  16. Cleghorn, N., & Marean, C. W. (2007). The destruction of skeletal elements by carnivores: The growth of a general model for skeletal element destruction and survival in zooarchaeological assemblages. In T. R. Pickering, K. Schick, & N. Toth, (Eds.), Breathing life into fossils: Taphonomic Studies in Honor of C.K. (Bob) Brain (pp. 37–66). Gosport: Stone Age Press.Google Scholar
  17. Coard, R. (1999). One bone, two bones, wet bones, dry bones—transport potentials under experimental conditions. Journal of Archaeological Science, 26, 1369–1375.CrossRefGoogle Scholar
  18. Coard, R., & Dennell, R. W. (1995). Taphonomy of some articulated skeletal remains: Transport potential in an artificial environment. Journal of Archaeological Science, 22, 441–448.CrossRefGoogle Scholar
  19. Domínguez-Rodrigo, M., de Juana, S., Galán, A. B., & Rodríguez, M. (2009). A new protocol to differentiate trampling marks from butchery cut marks. Journal of Archaeological Science, 36, 2643–2654.CrossRefGoogle Scholar
  20. Gaudzinski-Windheuser, S., Kindler, L., Rabinovich, R., & Goren-Inbar, N. (2010). Testing heterogeneity in faunal assemblages from archaeological sites. Tumbling and trampling experiments at the Early-Middle Pleistocene site of Gesher Benot Ya‘aqov (Israel). Journal of Archaeological Science, 37, 3170–3190.CrossRefGoogle Scholar
  21. Hill, A. P. (1978). Taphonomical background to fossil man-problems in palaeocology. In W. W. Bishop (Ed.), Geological society, London (pp. 87–101). Special Publications 6. Edinburgh: Scottish Academic Press and University of Toronto Press.Google Scholar
  22. Hill, A. P. (1980). Early post-mortem damage to the remains of some contemporary East African mammals. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making (pp. 131–155). Chicago: University of Chicago Press.Google Scholar
  23. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Marean, C. W., Spencer, L. M., Blumenschine, R. J., & Capaldo, S. D. (1992). Captive hyaena bone choice and destruction, the schlepp effect and Olduvai archaeofaunas. Journal of Archaeological Science, 19, 101–121.CrossRefGoogle Scholar
  25. Pickering, T. R., & Egeland, C. P. (2006). Experimental patterns of hammerstone percussion damage on bones: Implications for inferences of carcass processing by humans. Journal of Human Evolution, 33, 459–469.Google Scholar
  26. Shipman, P. (1981). Life history of a fossil: An introduction to taphonomy and paleoecology. Cambridge, MA: Harvard University Press.Google Scholar
  27. Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pleistocene vertebrate fauna, Knox Country, Nebraska. Contributions to Geology, Special Papers 1 (Wyoming).Google Scholar
  28. Domínguez-Rodrigo, M., & Barba, R. (2006). New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: The carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution, 50, 170–194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Earth Sciences and National Natural History Collections, Institute of Archaeology, The Hebrew University of JerusalemGivat Ram JerusalemIsrael
  2. 2.Palaeolithic Research UnitRömisch-Germanisches ZentralmuseumNeuwiedGermany
  3. 3.Johannes Gutenberg-University Mainz, Institute for Pre- and Protohistoric ArchaeologyNeuwiedGermany
  4. 4.Institute of Archaeology, The Hebrew University of JerusalemMt. Scopus JerusalemIsrael

Personalised recommendations