Skip to main content

Population Genetics and Molecular Epidemiology of Infectious Diseases

  • Chapter
  • First Online:
New Frontiers of Molecular Epidemiology of Infectious Diseases

Abstract

Population genetics is based on analysing the polymorphism patterns of genetic markers at different organizational levels; i.e. within and between individuals sampled among populations. From such analyses, inferences can be made on the reproductive modes of the species in question (hence, on patterns of genetic transmission along successive generations), as well as on the demographic functioning of the studied populations (i.e., population sizes, dispersal rates among populations, etc.). In this chapter, we present the main bases of population genetics theory and illustrate its interest for epidemiological issues via different case studies on parasite species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson T, Ropper C (2005) The origin and spread of antimalarial drug resistance: lessons for policy markers. Acta Trop 96:269–280

    Google Scholar 

  • Andolfato P (2001) Adaptive hitchhiking effects on genome variability. Curr Opin Genet Dev 11:635–641

    Article  Google Scholar 

  • Archie EA, Luikart G, Ezenwa VO (2009) Infecting epidemiology with genetics: a new frontier in disease ecology. Trends Ecol Evol 24:21–30

    Article  PubMed  Google Scholar 

  • Berman J, Sudbery P (2002) Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3:918–928

    Article  PubMed  CAS  Google Scholar 

  • Boulinier T, Danchin E (1996) Population trends in Kittiwake Rissa tridactyla colonies in relation to tick infestation. Ibis 138:326–334

    Article  Google Scholar 

  • Brookes A (1999) The essence of SNPs. Gene 234:177–186

    Article  PubMed  CAS  Google Scholar 

  • Chevillon C, Koffi BB, Barré N et al (2007a) Direct and inferences on parasite mating and gene transmission patterns- pangamy in the cattle tick Rhipicephalus (Boophilus) microplus. Infect Genet Evol 7:298–304

    Article  PubMed  CAS  Google Scholar 

  • Chevillon C, Ducornez S, de Meeûs T et al (2007b) Accumulation of acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) populations from New Caledonian Island. Vet Parasitol 147:276–288

    Article  PubMed  CAS  Google Scholar 

  • Cornuet J, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2004

    PubMed  CAS  Google Scholar 

  • Criscione CD, Blouin MS (2005) Effective sizes of macroparasite populations: a conceptual model. Trends Parasitol 21:212–217

    Article  PubMed  Google Scholar 

  • Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14:2247–2257

    Article  PubMed  CAS  Google Scholar 

  • David P, Perdieu M-A, Pernot A-F et al (1997) Fine-grained spatial and temporal population genetic structure in the marine bivalve Spisula ovalis. Evolution 51:1318–1322

    Article  Google Scholar 

  • de Meeûs T, Balloux F (2005) F-statistics of clonal diploid structured in numerous demes. Mol Ecol 14:2695–2702

    Article  PubMed  Google Scholar 

  • de Meeus T, Durand P, Renaud F (2003) Species concept: what for? Trends Parasitol 19:425–427

    Article  PubMed  Google Scholar 

  • de Meeûs T, Lehmann L, Balloux F (2006) Molecular epidemiology of clonal diploids: a quick overview and a short DIY (do it yourself) notice. Infect Genet Evol 6:163–170

    Article  PubMed  Google Scholar 

  • de Meeûs T, McCoy K, Prugnolle F et al (2007) Population genetics and molecular epidemiology or how to “débusquer la bête”. Infect Genet Evol 7:308–332

    Article  PubMed  Google Scholar 

  • de Meeûs T, Prugnolle F, Agnew P (2009) Asexual reproduction in infectious diseases. In: Schön I, Martens K, van Dijk P (eds) Lost sex: the evolutionary biology of parthenogenesis. Springer, New York, pp 517–533

    Chapter  Google Scholar 

  • Dietrich M, Gomez-Diaz E, McCoy KD (2011) Worldwide distribution and diversity of seabird ticks: Implications for the ecology and epidemiology of tick-borne pathogens. Vector-borne and Zoonotic Diseases 11:453–470

    Google Scholar 

  • Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes – application to human mitochondrial-DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Fidock D, Nomura T, Talley A et al (2000) Mutations in the P-falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6:861–871

    Article  PubMed  CAS  Google Scholar 

  • Frisch J (1999) Towards a permanent solution for controlling cattle tick. Int J Parasitol 29:57–71

    Article  PubMed  CAS  Google Scholar 

  • Garrigan D, Hedrick P (2003) Detecting adaptive molecular polymorphism, lessons from MHC. Am J Hum Gen 73:363–375

    Google Scholar 

  • Gomez-Diaz E, Doherty PJ, Duneau D, McCoy K (2010) Cryptic vector divergence masks vector-specific patterns of infection: an example form the marine cycle of Lyme borreliosis. Evol Appl 3:391–401

    Article  Google Scholar 

  • Goudet J (1995) FSTat version 1.2: a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J (2005) HIERFSTAT, a package for R to compute and test hierachical F-statistics. Mol Ecol Notes 5:184–486

    Article  Google Scholar 

  • Guiguen C (1988) Anthropozoonoses et oiseaux marins: contribution à l’étude des ectoparasites hématophages des espèces nicheuses sur les côtes françaises continentales et insulaires. PhD thesis (in French), Université Aix-Marseille

    Google Scholar 

  • Hartl D, Clarke A (1989) Principles of population genetics theory. Sinauer, Sunderland

    Google Scholar 

  • Hedrick P (2005) Genetics of populations, 3rd edn. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Hull C, Raisner R, Jonhson A (2000) Evidence for mating of the asexual yeast Candida albicans in a mammalian host. Science 289:307–310

    Article  PubMed  CAS  Google Scholar 

  • Kempf F, Boulinier T, de Meeûs T et al (2009a) Recent evolution of host-associated divergence in the seabird tick Ixode uriae. Mol Ecol 18:4450–4462

    Article  PubMed  CAS  Google Scholar 

  • Kempf F, de Meeûs T, Arnathau C et al (2009b) Assortative pairing in Ixodes ricinus L (Acari: Ixodidae), the European vector of Lyme disease. J Med Entomol 46:471–474

    Article  PubMed  Google Scholar 

  • Koffi BB, de Meeûs T, Barré N et al (2006) Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management. Mol Ecol 15:4603–4611

    Article  PubMed  CAS  Google Scholar 

  • Kunz W (2002) When is a parasite species a parasite species. Trends Parasitol 18:121–124

    Article  PubMed  Google Scholar 

  • Labruna M, Naranjo A, Thompson C et al (2009) Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus. BMC Evol Biol 9:46

    Article  PubMed  Google Scholar 

  • Martin D, Williamson C, Posada D (2005a) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Posada D, Crandall K et al (2005b) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retrov 21:98–102

    Article  CAS  Google Scholar 

  • McCoy K, Boulinier T, Tirard C et al (2001) Host-specificity of a generalist parasite: genetic evidence of sympatric host-races in the seabird tick Ixodes uriae. J Evol Biol 14:395–405

    Article  Google Scholar 

  • McCoy KD, Boulinier T, Tirard C et al (2003) Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution 57:288–296

    PubMed  Google Scholar 

  • McCoy K, Chapuis E, Tirard C et al (2005) Recurrent evolution of host-specialized races in a globally distributed parasite. P Roy Soc London B 272:2389–2395

    Article  Google Scholar 

  • Milgroom M, Cortesi P (1999) Analysis of the population structure of the chestnut blight fungus based on vegetative incompatibility genotypes. Proc Natl Acad Sci USA 96:10518–10523

    Article  PubMed  CAS  Google Scholar 

  • Nébavi F, Ayala F, Renaud F et al (2006) Clonal population structure and genetic diversity of Candida albicans in AIDS patients from Abidjan (Côte d’Ivoire). Proc Natl Acad Sci USA 103:3663–3668

    Article  PubMed  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  PubMed  CAS  Google Scholar 

  • Osterkamp J, Wahl U, Schmalfuss G et al (1999) Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 185:59–67

    Article  CAS  Google Scholar 

  • Pasteur N, Pasteur G, Bonhomme F et al (1988) Practical isoenzyme genetics. Ellis Hortwood Ltd, Chichester

    Google Scholar 

  • Payne D (1987) Spread of chloroquine resistance in Plasmodium falciparum. Parasitol Today 3:241–246

    Article  PubMed  CAS  Google Scholar 

  • Prugnolle F, de Meeûs T (2010) Apparent high recombination rates in clonal parasitic organisms due to inappropriate sampling design. Heredity 104:135–140

    Article  PubMed  CAS  Google Scholar 

  • Prugnolle F, Theron A, Durand P et al (2004) Test of pangamy by genetic analysis of Schistosoma mansoni pairs within its natural murine host in Guadeloupe. J Parasitol 90:507–509

    Article  PubMed  Google Scholar 

  • Prugnolle F, Durand P, Renaud F et al (2010) Effective size of the hierarchically structured populations of the agent of malaria: a coalescent-based model. Heredity 104:371–377

    Article  PubMed  CAS  Google Scholar 

  • Pybus OG, Charleston MA, Gupta S et al (2001) The epidemic behavior of the hepatitis C virus. Science 292:2323–2325

    Article  PubMed  CAS  Google Scholar 

  • Pybus OG, Drummond AJ, Nakano T et al (2003) The epidemiology and iatrogenic transmission of hepatitis C virus in Egypt: a Bayesian coalescent approach. Mol Biol Evol 20:381–387

    Article  PubMed  CAS  Google Scholar 

  • Rageau J, Vergent G (1959) Les tiques (Acariens: Ixodidae) des îles françaises du Pacifique. Bull Soc Pathol Exot 52:819–835

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and oecumenism. J Hered 86:248–249

    Google Scholar 

  • Razakandrainibe FG, Durand P, Koella JC et al (2005) “Clonal” population structure of the malaria agent Plasmodium falciparum in high-infection regions. Proc Natl Acad Sci USA 102:17388–17393

    Article  PubMed  CAS  Google Scholar 

  • Real LA, Henderson JC, Biek R et al (2005) Unifying the spatial population dynamics and molecular evolution of epidemic rabies virus. Proc Natl Acad Sci USA 102:12107–12111

    Article  PubMed  CAS  Google Scholar 

  • Richter D, Postic D, Sertour N et al (2006) Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii. Int J Syst Evol Microbiol 56:s873–s881

    Article  Google Scholar 

  • Rousset F (1997) Geographic structure and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Rousset F (2004) Genetic structure and selection in subdivided populations. Princeton University Press, Princeton

    Google Scholar 

  • Rousset F (2008) GENEPOP007: a complete reimplementation of the GENEPOP software for windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Uyenoyama M (2005) Evolution under tight linkage to mating types. New Phytol 165:63–70

    Article  PubMed  Google Scholar 

  • Verges J (1944) Les tiques du bétail. Méthodes d’éradication. Imprimeries Réunies, Nouméa

    Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population genetic structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wootton J, Feng X, Ferdig M et al (2002) Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418:320–323

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to system of mating. Evolution 19:395–420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Chevillon .

Editor information

Editors and Affiliations

Glossary

Bottleneck

Population bottleneck refers to drastic reduction in population sizes. This induces, at all loci, a decrease in heterozygous frequency and an even more pronounced drop in the allele numbers observed relatively to a demographical stable population with the same census size. In other words the bottlenecked population will remain away from mutation/drift equilibrium for a number of generations following the reduction in census size. The longer last the bottleneck (in term of generation) and the stronger the demographic reduction, the more intense and durable will be the genetic signature of such an event.

Epistatic effects

there are epistatic effects on selection among loci A and B whenever the intensities of selection pressures acting on the polymorphism at locus A vary among the different genotypes observed at the locus B and vice versa.

Identity by descent

two sampled alleles are said identical by descent if they result from an event of DNA replication in any ancestral generation. The alleles identical by descent are obligatory identical in state.

Identity in state

two alleles are identical in state whenever the genotyping methods used is unable to discriminate them.

Founding effect

the colonization of a new habitat is usually achieved by a few individuals relatively to the standard range of population sizes in the ancestral distribution area of the immigrating species. Therefore the colonization of a new area, habitat or host species for a parasite, usually induces a population bottleneck; such a bottleneck associated to colonization is called founding effect.

Homoplasy

there is homoplasy whenever the identity in state and the identity by descent are not synonymous. Reverse mutation and polymorphism with a finite number of distinguishable alleles (i.e. allelic sizes of microsatellite alleles) are frequent causes of homoplasy.

Fixation

an allele has reached fixation in a population when it remains the only allele present within a population. The immigration of different alleles into the population and mutation into a different allelic state are the only ways to re-create local polymorphism in a fixed population.

Mutation/drift equilibrium

let’s consider an isolated population (no immigration into it, no emigration from it) of constant finite size, and a neutral locus at which pangamy is realized so that it tends to be at HWE. At this locus along time, mutation will regularly introduce new alleles while genetic drift will regularly make existing alleles to disappear. The combined action of mutation and genetic drift will make evolving the polymorphism observed at the considered locus to evolve and reach an equilibrium where the number of distinct alleles (hence the heterozygous frequency) will remain constant even if the identity of the alleles present in the population will keep on changing.

Mantel test

The Mantel test is a statistical test of correlation between two matrices of same dimensions that is adapted to the case where the elements of any matrix are not independent from one another (such as the matrix of either geographical distances or that of genetic distances among populations). This test is performed by randomly permuting the rows and columns of one matrix multiple times.

Panmixia

random meeting of the gametes produced in a population; theoretically achieved only for species where individuals are self-compatible hermaphrodites.

Pangamy

random mating among the sexual partners present in population; theoretically achieved only for hermaphrodite species.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chevillon, C., de Meeûs, T., McCoy, K.D. (2012). Population Genetics and Molecular Epidemiology of Infectious Diseases. In: Morand, S., Beaudeau, F., Cabaret, J. (eds) New Frontiers of Molecular Epidemiology of Infectious Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2114-2_4

Download citation

Publish with us

Policies and ethics