Molecular Typing of Bacterial Pathogens: A Tool for the Epidemiological Study and Control of Infectious Diseases

Chapter

Abstract

Molecular typing is nowadays an integral part of the public health microbiology toolbox. It indexes subspecies genotypic or phenotypic characters to estimate the genetic relatedness of microbial isolates and infer from it their probability of belonging to the same chain of transmission. Typing is used both to investigate outbreaks and enhance the resolution of disease surveillance at different population levels: (i) locally, in hospitals or the community, by clinical or public health laboratories; (ii) nationally, by reference laboratories or (iii) globally, through international surveillance networks. This chapter provides an overview of currently available and emerging technologies for typing human bacterial pathogens, discusses their suitability to different levels of use and reviews examples of integrated typing in advanced surveillance systems.

Keywords

Typing Method Multi Locus Sequencing Typing Epidemiological Typing Human Bacterial Pathogen Multiple Locus VNTR Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aires-de-Sousa M, Boye Z, de Lencastre H et al (2006) High interlaboratory reproducibility of DNA sequence-based typing of bacteria in a multicenter study. J Clin Microbiol 44:619–621PubMedCrossRefGoogle Scholar
  2. Allix C, Walravens K, Saegerman C et al (2006) Evaluation of the epidemiological relevance of variable-number tandem-repeat genotyping of Mycobacterium bovis and comparison of the method with IS6110 restriction fragment length polymorphism analysis and spoligotyping. J Clin Microbiol 44:1951–1962PubMedCrossRefGoogle Scholar
  3. Best EL, Fox AJ, Frost JA et al (2004) Identification of Campylobacter jejuni multilocus sequence type ST-21 clonal complex by single-nucleotide polymorphism analysis. J Clin Microbiol 42:2836–2839PubMedCrossRefGoogle Scholar
  4. Blanc DS, Petignat C, Moreillon P et al (1996) Quantitative antibiogram as a typing method for the prospective epidemiological surveillance and control of MRSA: comparison with molecular typing. Infect Control Hosp Epidemiol 17:654–659PubMedCrossRefGoogle Scholar
  5. Bonacorsi S, Bidet P, Mahjoub F et al (2009) Semi-automated rep-PCR for rapid differentiation of major clonal groups of Escherichia coli meningitis strains. Int J Med Microbiol 299:402–409PubMedCrossRefGoogle Scholar
  6. Carretto E, Barbarini D, Farina C et al (2008) Use of the DiversiLab semiautomated repetitive-sequence-based polymerase chain reaction for epidemiologic analysis on Acinetobacter baumannii isolates in different Italian hospitals. Diagn Microbiol Infect Dis 60:1–7PubMedGoogle Scholar
  7. Cazalet C, Jarraud S, Ghavi-Helm Y et al (2008) Multigenome analysis identifies a worldwide distributed epidemic Legionella pneumophila clone that emerged within a highly diverse species. Genome Res 18:431–441PubMedCrossRefGoogle Scholar
  8. Cherkaoui A, Hibbs J, Emonet S et al (2010) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169–1175PubMedCrossRefGoogle Scholar
  9. Coimbra RS, Grimont F, Lenormand P et al (2000) Identification of Escherichia coli O-serogroups by restriction of the amplified O-antigen gene cluster (rfb-RFLP). Res Microbiol 151:639–654PubMedCrossRefGoogle Scholar
  10. Deplano A, Struelens M (2006) Marqueurs épidemiologiques. In: Freney J, Renaud F, Bollet C, Leclercq R (eds) Actualités permanentes en Bactériologie Clinique. ESKA, ParisGoogle Scholar
  11. Deplano A, Schuermans A, Van Eldere J et al (2000) Multicenter evaluation of epidemiological typing of methicillin-resistant Staphylococcus aureus strains by repetitive-element PCR analysis. The European study group on epidemiological markers of the ESCMID. J Clin Microbiol 38:3527–3533PubMedGoogle Scholar
  12. Deplano A, de Mendonca R, de Ryck R et al (2006) External quality assessment of molecular typing of Staphylococcus aureus isolates by a network of laboratories. J Clin Microbiol 44:3236–3244PubMedCrossRefGoogle Scholar
  13. Deplano A, Denis O, Nonhoff C et al (2007a) Outbreak of hospital-adapted clonal complex-17 vancomycin-resistant Enterococcus faecium strain in a haematology unit: role of rapid typing for early control. J Antimicrob Chemother 60:849–854PubMedCrossRefGoogle Scholar
  14. Deplano A, Rodriguez-Villalobos H, Glupczynski Y et al (2007b) Emergence and dissemination of multidrug resistant clones of Pseudomonas aeruginosa producing VIM-2 metallo-beta-lactamase in Belgium. Euro Surveill 12:E070118PubMedGoogle Scholar
  15. Dingle KE, Colles FM, Wareing DR et al (2001) Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol 39:14–23PubMedCrossRefGoogle Scholar
  16. Everley RA, Mott TM, Wyatt SA et al (2008) Liquid chromatography/mass spectrometry characterization of Escherichia coli and Shigella species. J Am Soc Mass Spectrom 19:1621–1628PubMedCrossRefGoogle Scholar
  17. Facklam R, Beall B, Efstratiou A et al (1999) emm typing and validation of provisional M types for group A streptococci. Emerg Infect Dis 5:247–253PubMedCrossRefGoogle Scholar
  18. Fluit AC, van der Bruggen JT, Aarestrup FM et al (2006) Priorities for antibiotic resistance surveillance in Europe. Clin Microbiol Infect 12:410–417PubMedCrossRefGoogle Scholar
  19. Fontana C, Favaro M, Minelli S et al (2008) Acinetobacter baumannii in intensive care unit: a novel system to study clonal relationship among the isolates. BMC Infect Dis 8:79PubMedCrossRefGoogle Scholar
  20. Fujinami Y, Kikkawa HS, Kurosaki Y et al (2010) Rapid discrimination of Legionella by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Microbiol Res 166:77–86PubMedCrossRefGoogle Scholar
  21. Garaizar J, Rementeria A, Porwollik S (2006) DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens? FEMS Immunol Med Microbiol 47:178–189PubMedCrossRefGoogle Scholar
  22. Ginevra C, Lopez M, Forey F et al (2009) Evaluation of a nested-PCR-derived sequence-based typing method applied directly to respiratory samples from patients with Legionnaires’ disease. J Clin Microbiol 47:981–987PubMedCrossRefGoogle Scholar
  23. Goerke C, Papenberg S, Dasbach S et al (2004) Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. J Infect Dis 189:724–734PubMedCrossRefGoogle Scholar
  24. Goyal M, Saunders NA, Van Embden JDA et al (1997) Differentiation of Mycobacterium tuberculosis isolates by spoligotyping and IS6110 restriction fragment length polymorphism. J Clin Microbiol 35:647–651PubMedGoogle Scholar
  25. Hallin M, Deplano A, Denis O et al (2007) Validation of pulsed-field gel electrophoresis and spa typing for long-term, nationwide epidemiological surveillance studies of Staphylococcus aureus infections. J Clin Microbiol 45:127–133PubMedCrossRefGoogle Scholar
  26. Harmsen D, Claus H, Witte W et al (2003) Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442–5448PubMedCrossRefGoogle Scholar
  27. Harris SR, Feil EJ, Holden MT et al (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474PubMedCrossRefGoogle Scholar
  28. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466PubMedGoogle Scholar
  29. Kamerbeek J, Schouls L, Kolk A et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914PubMedGoogle Scholar
  30. Koreen L, Ramaswamy SV, Graviss EA et al (2004) spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792–799PubMedCrossRefGoogle Scholar
  31. Lewis T, Loman NJ, Bingle L et al (2010) High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak. J Hosp Infect 75:37–41PubMedCrossRefGoogle Scholar
  32. Maiden MC, Bygraves JA, Feil E et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145PubMedCrossRefGoogle Scholar
  33. Majtan T, Majtanova L, Timko J et al (2007) Oligonucleotide microarray for molecular characterization and genotyping of Salmonella spp. strains. J Antimicrob Chemother 60:937–94PubMedCrossRefGoogle Scholar
  34. Maquelin K, Dijkshoorn L, van der Reijden TJ et al (2006) Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy. J Microbiol Methods 64:126–131PubMedCrossRefGoogle Scholar
  35. McDougal LK, Steward CD, Killgore GE et al (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41:5113–5120PubMedCrossRefGoogle Scholar
  36. Mellmann A, Friedrich AW, Rosenkotter N et al (2006) Automated DNA sequence-based early warning system for the detection of methicillin-resistant Staphylococcus aureus outbreaks. PLoS Med 3:e33PubMedCrossRefGoogle Scholar
  37. Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22:611–633PubMedCrossRefGoogle Scholar
  38. Monecke S, Kuhnert P, Hotzel H et al (2007) Microarray based study on virulence-associated genes and resistance determinants of Staphylococcus aureus isolates from cattle. Vet Microbiol 125:128–140PubMedCrossRefGoogle Scholar
  39. Murchan S, Kaufmann ME, Deplano A et al (2003) Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus: a single approach developed by consensus in 10 European laboratories and its application for tracing the spread of related strains. J Clin Microbiol 41:1574–1585PubMedCrossRefGoogle Scholar
  40. Musser JM, Kroll JS, Granoff DM et al (1990) Global genetic structure and molecular epidemiology of encapsulated Haemophilus influenzae. Rev Infect Dis 12:75–111PubMedCrossRefGoogle Scholar
  41. Ochman H, Selander RK (1984) Evidence for clonal population structure in Escherichia coli. Proc Natl Acad Sci USA 81:198–201PubMedCrossRefGoogle Scholar
  42. Oelemann MC, Diel R, Vatin V et al (2007) Assessment of an optimized mycobacterial interspersed repetitive- unit-variable-number tandem-repeat typing system combined with spoligotyping for population-based molecular epidemiology studies of tuberculosis. J Clin Microbiol 45:691–697PubMedCrossRefGoogle Scholar
  43. Pfaller MA, Wendt C, Hollis RJ et al (1996) Comparative evaluation of an automated ribotyping system versus pulsed-field gel electrophoresis for epidemiological typing of clinical isolates of Escherichia coli and Pseudomonas aeruginosa from patients with recurrent gram-negative bacteremia. Diagn Microbiol Infect Dis 25:1–8PubMedCrossRefGoogle Scholar
  44. Pitout JD, Campbell L, Church DL et al (2009) Using a commercial DiversiLab semiautomated repetitive sequence-based PCR typing technique for identification of Escherichia coli clone ST131 producing CTX-M-15. J Clin Microbiol 47:1212–1215PubMedCrossRefGoogle Scholar
  45. Smith JM, Smith NH, O’Rourke M et al (1993) How clonal are bacteria? Proc Natl Acad Sci USA 90:4384–4388PubMedCrossRefGoogle Scholar
  46. Stevenson LG, Drake SK, Murray PR (2010) Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:444–447PubMedCrossRefGoogle Scholar
  47. Struelens MJ, ESGEM (1996) Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect 2:2–11PubMedCrossRefGoogle Scholar
  48. Supply P, Lesjean S, Savine E et al (2001) Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 39:3563–3571PubMedCrossRefGoogle Scholar
  49. Supply P, Allix C, Lesjean S et al (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510PubMedCrossRefGoogle Scholar
  50. Swaminathan B, Barrett TJ, Hunter SB et al (2001) PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 7:382–389PubMedGoogle Scholar
  51. Tang K, Oeth P, Kammerer S et al (2004) Mining disease susceptibility genes through SNP analyses and expression profiling using MALDI-TOF mass spectrometry. J Proteome Res 3:218–227PubMedCrossRefGoogle Scholar
  52. Tenover FC, Gay EA, Frye S et al (2009) Comparison of typing results obtained for methicillin-resistant Staphylococcus aureus isolates with the DiversiLab system and pulsed-field gel electrophoresis. J Clin Microbiol 47:2452–2457PubMedCrossRefGoogle Scholar
  53. Tibayrenc M (1996) Towards a unified evolutionary genetics of microorganisms. Annu Rev Microbiol 50:401–429PubMedCrossRefGoogle Scholar
  54. van Belkum A (2002) Molecular typing of micro-organisms: at the centre of diagnostics, genomics and pathogenesis of infectious diseases? J Med Microbiol 51:7–10PubMedGoogle Scholar
  55. van Belkum A (2007) Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). FEMS Immunol Med Microbiol 49:22–27PubMedCrossRefGoogle Scholar
  56. van Belkum A, Sluijuter M, de Groot R et al (1996) Novel BOX repeat PCR assay for high-resolution typing of Streptococcus pneumoniae strains. J Clin Microbiol 34:1176–1179PubMedGoogle Scholar
  57. van Belkum A, van Leeuwen W, Kaufmann ME et al (1998) Assessment of resolution and intercenter reproducibility of results of genotyping Staphylococcus aureus by pulsed-field gel electrophoresis of SmaI macrorestriction fragments: a multicenter study. J Clin Microbiol 36:1653–1659PubMedGoogle Scholar
  58. van Belkum A, Tassios PT, Dijkshoorn L et al (2007) Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 13(Suppl 3):1–46PubMedCrossRefGoogle Scholar
  59. van Leeuwen W, Libregts C, Schalk M et al (2001) Binary typing of Staphylococcus aureus strains through reversed hybridization using digoxigenin-universal linkage system-labeled bacterial genomic DNA. J Clin Microbiol 39:328–331PubMedCrossRefGoogle Scholar
  60. van Leeuwen WB, Snoeijers S, Werken-Libregts C et al (2002) Intercenter reproducibility of binary typing for Staphylococcus aureus. J Microbiol Methods 51:19–28PubMedCrossRefGoogle Scholar
  61. Willemse-Erix HF, Jachtenberg J, Barutci H et al (2010) Proof of principle for successful characterization of methicillin-resistant coagulase-negative staphylococci isolated from skin by use of Raman spectroscopy and pulsed-field gel electrophoresis. J Clin Microbiol 48:736–740PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Marie Hallin
    • 1
  • Ariane Deplano
    • 1
  • Marc J. Struelens
    • 2
  1. 1.Laboratoire de Microbiologie et Laboratoire de Référence des Staphylocoques-MRSAHôpital ErasmeBrusselsBelgium
  2. 2.Scientific Advice UnitEuropean Centre for Disease Prevention and ControlStockholmSweden

Personalised recommendations