Epidemiological Interaction at the Wildlife/Livestock/Human Interface: Can We Anticipate Emerging Infectious Diseases in Their Hotspots? A Framework for Understanding Emerging Diseases Processes in Their Hot Spots

  • Alexandre Caron
  • Serge Morand
  • Michel de Garine-Wichatitsky
Chapter

Abstract

Emerging infectious diseases’ hotspots have been identified as multi-host and multi-pathogen systems often characterized in tropical ecosystems by an extensive wildlife/domestic/human interface. The pathogen communities shared by the wild and domestic populations at this interface reflect the historical epidemiological interactions between them. In a research framework using recent community ecology, evolutionary biology and molecular biology advances, this information can be used to identify potential pathways for future pathogen spill-over initiating the emergence process. In other words, an understanding of the mechanisms of pathogen transmission in a specific ecosystem can provide an interaction network between host populations defined by nodes and edges and characterized by the frequency, intensity and direction of the interactions with a direct input for targeted disease surveillance.

Keywords

Parasite Species Host Population Rodent Species Human Species Jaccard Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was part of a French ANR Biodiversity ANR 07 BDIV 012, project CERoPath, “Community Ecology of Rodents and their Pathogens in a changing environment”. The authors are also grateful to Kittipong Chaisiri and Vincent Herbreteau.

References

  1. Adams DC (2008) Phylogenetic meta-analysis. Evolution 62:567–572PubMedCrossRefGoogle Scholar
  2. Altizer S, Harvell D, Friedle E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol Evol 18:589–596CrossRefGoogle Scholar
  3. Arino J, van den Driessche P (2006) Disease spread in metapopulations. Fields Inst Commun 48:1–12Google Scholar
  4. Arino J, Davis JR, Hartley D et al (2005) A multi-species epidemic model with spatial dynamics. Math Med Biol 22:129–142PubMedCrossRefGoogle Scholar
  5. Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmental habitat. Oecologia 96:373–382CrossRefGoogle Scholar
  6. Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and network models in epidemiology. J R Soc Interface 4:879–891PubMedCrossRefGoogle Scholar
  7. Barclay E (2008) Predicting the next pandemic. Lancet 372:1025–1026PubMedCrossRefGoogle Scholar
  8. Bastos AD, Anderson EC, Bengis RG et al (2003) Molecular epidemiology of SAT3-type foot-and-mouth disease. Virus Genes 27:283–290PubMedCrossRefGoogle Scholar
  9. Begon M, Hazel SM, Baxby D et al (1999) Transmission dynamics of a zoonotic pathogen within and between wildlife host species. Proc Roy Soc Lond Ser B 266:1939–1945CrossRefGoogle Scholar
  10. Biek R, Alexei J, Drummond J et al (2006) A virus reveals population structure and recent demographic history of its carnivore host. Science 311:538–541PubMedCrossRefGoogle Scholar
  11. Bohm M, Hutchings MR, White PC (2009) Contact networks in a wildlife-livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle. PLoS One 4:e5016PubMedCrossRefGoogle Scholar
  12. Booth M, Dunne DW (2004) Spatial awareness in parasite immuno-epidemiology. Parasite Immunol 26:499–507PubMedCrossRefGoogle Scholar
  13. Bordes F, Morand S (2009) Parasite diversity: an overlooked metric of parasite pressures. Oikos 118:801–806CrossRefGoogle Scholar
  14. Boyle TP, Smillie GM, Anderson JC et al (1990) A sensitivity analysis of nine diversity and seven similarity indices. Res J Water Pollut C 62:749–762Google Scholar
  15. Brook RK, Kutz SJ, Veitch AM et al (2009) Fostering community-based wildlife health monitoring and research in the Canadian North. EcoHealth 6:266–278PubMedCrossRefGoogle Scholar
  16. Caley P, Hone J (2004) Disease transmission between and within species, and the implications for disease control. J Appl Ecol 41:94–104CrossRefGoogle Scholar
  17. Caron A, de Garine-Wichatitsky M and Morand S (Submitted) Ecology of infectious disease transmission in multi-host systemsGoogle Scholar
  18. Caron A, de Garine-Wichatitsky M, Gaidet N et al (2010) Estimating dynamic risk factors for pathogen transmission using community-level bird census data at the wildlife/domestic interface. Ecol Soc 15:25Google Scholar
  19. Cattoli G, Monne I, Fusaro A et al (2009) Highly pathogenic avian influenza virus subtype H5N1 in Africa: a comprehensive phylogenetic analysis and molecular characterization of isolates. PLoS One 4:e4842PubMedCrossRefGoogle Scholar
  20. Chaisiri K, Chaeychomsri W, Siruntawineti J et al (2010) Human-dominated habitats and helminth parasitism in Southeast Asian murids. Parasitol Res 107:931–937PubMedCrossRefGoogle Scholar
  21. Chapitre de ce livre (2011) Molecular epidemiology of disease resistance genes with perspectives for researches on biological invasions and hybrid zones. In: Morand S, Beaudeau F, Cabaret S (eds.) New frontiers in molecular epidimiology. Springer (in press)Google Scholar
  22. Chevillon C, de Meeûs T, McCoy KD (2011) Population genetics and molecular epidemiology of infectious diseases. In: Morand S, Beaudeau F, Cabaret S (eds.) New frontiers in molecular epidimiology. Springer (in press)Google Scholar
  23. Childs JE, Richt JA, Mackenzie JS (2007) Introduction: conceptualizing and partitioning the emergence process of zoonotic viruses from wildlife to humans. In: Childs JE, Mackenzie JS, Richt JA (eds.) Wildlife and emerging zoonotic diseases: the biology, circumstances and consequences of cross-species transmission. Springer, Heidelberg, pp 1–31CrossRefGoogle Scholar
  24. Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Proc R Soc Lond Ser B 356:991–999Google Scholar
  25. Cleaveland S, Haydon DT, Taylor L (2007) Overview of pathogen emergence: which pathogens emerge, when and why? In: Childs JE, Mackenzie JS, Richt JA (eds.) Wildlife and emerging zoonotic diseases: the biology, circumstance and consequences of cross-species transmission. Springer, Heidelberg, pp 85–111CrossRefGoogle Scholar
  26. Cohen J (2007) Reconstruction of the origins of the AIDS epidemic from archived HIV isolates. Science 318:731PubMedCrossRefGoogle Scholar
  27. Cottam EM, Thebaud G, Wadsworth J et al (2008) Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc R Soc Lond Ser B 275:887–895CrossRefGoogle Scholar
  28. Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78:103–116PubMedCrossRefGoogle Scholar
  29. Davies TJ, Pedersen AB (2008) Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc R Soc Lond Ser B 275:1695–1701CrossRefGoogle Scholar
  30. de Garine-Wichatitsky M, Caron A, Gomo A et al (2010) Bovine tuberculosis in buffaloes, Southern Africa. Emerg Infect Dis 16:884–885PubMedGoogle Scholar
  31. Ezenwa VO (2003) Habitat overlap and gastrointestinal parasitism in sympatric African bovids. Parasitology 126:379–388PubMedCrossRefGoogle Scholar
  32. Foster JT, Beckstrom-Sternberg SM, Pearson T et al (2009) Whole-genome-based phylogeny and divergence of the genus Brucella. J Bacteriol 191:2864–2870PubMedCrossRefGoogle Scholar
  33. Gaidet N, Cattoli G, Hammoumi S et al (2008) Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. PLoS Pathog 4:e1000127PubMedCrossRefGoogle Scholar
  34. Gibbs EPJ, Anderson TC (2009) ‘One World – One Health’ and the global challenge of epidemic diseases of viral etiology. Vet Ital 45:35–44PubMedGoogle Scholar
  35. Gilbert MTP, Rambaut A, Wlasiuk G et al (2007) The emergence of HIV/AIDS in the Americas and beyond. Proc Natl Acad Sci USA 104:18566–18570PubMedCrossRefGoogle Scholar
  36. Graham AL (2008) Ecological rules governing helminth-microparasite coinfection. Proc Natl Acad Sci USA 105:566–570PubMedCrossRefGoogle Scholar
  37. Gupta R, Michalski MH, Rijsberman FR (2009) Can an infectious disease genomics project predict and prevent the next pandemic? PLoS Biol 7:e1000219PubMedCrossRefGoogle Scholar
  38. Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508PubMedCrossRefGoogle Scholar
  39. Haydon DT, Cleaveland S, Taylor LH et al (2002) Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis 8:1468–1473PubMedGoogle Scholar
  40. Heath MF, Vernon MC, Webb CR (2008) Construction of networks with intrinsic temporal structure from UK cattle movement data. BMC Vet Res 4:11PubMedCrossRefGoogle Scholar
  41. Heeney JL, Dalgeish AG, Weiss RA (2006) Origins of HIV and the evolution of resistance to AIDS. Science 313:462–466PubMedCrossRefGoogle Scholar
  42. Holmes EC (2007) Viral evolution in the genomic age. PLoS Biol 5:e278PubMedCrossRefGoogle Scholar
  43. Holmes EC, Rambaut A (2004) Viral evolution and the emergence of SARS coronavirus. Proc R Soc Lond Ser B 359:1059–1065Google Scholar
  44. Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11:37–50CrossRefGoogle Scholar
  45. Johnson PT, Dobson A, Lafferty KD et al (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol 25:362–71PubMedCrossRefGoogle Scholar
  46. Jolles AE, Etienne RS, Olff H (2006) Independent and competing disease risks: implications for host populations in variable environments. Am Nat 167:745–757PubMedCrossRefGoogle Scholar
  47. Jolles AE, Ezenwa VO, Etienne RS et al (2008) Interactions between macroparasites and micro­parasites drive infection patterns in free-ranging African buffalo. Ecology 89:2239–2250PubMedCrossRefGoogle Scholar
  48. Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–994PubMedCrossRefGoogle Scholar
  49. Karesh WB, Deem SL (2000) Conservation medicine: a veterinary perspective. Cons Biol 14:336–337CrossRefGoogle Scholar
  50. Legendre P, Lapointe F-J, Casgrain P (1994) Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:1487–1499CrossRefGoogle Scholar
  51. Leroy EM, Kumulungui B, Pourrut X et al (2005) Fruit bats as reservoirs of Ebola virus. Nature 438:575–576PubMedCrossRefGoogle Scholar
  52. Lloyd-Smith JO, George D, Pepin KM et al (2009) Epidemic dynamic at the human-animal interface. Science 326:1362–1367PubMedCrossRefGoogle Scholar
  53. Luke DA, Harris JK (2007) Network analysis in public health: history, methods, and applications. Annu Rev Public Health 28:69–93PubMedCrossRefGoogle Scholar
  54. McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol 16:295–300PubMedCrossRefGoogle Scholar
  55. Morgan ER, Lundervoldb M, Medleyb GF et al (2006) Assessing risks of disease transmission between wildlife and livestock: the Saiga antelope as a case study. Biol Conserv 131:244–254CrossRefGoogle Scholar
  56. Nieberding C, Olivieri I (2007) Parasites: proxies for host history and ecology? Trends Ecol Evol 22:156–165PubMedCrossRefGoogle Scholar
  57. Osofsky SA, Cumming HM, Kock MD (2008) Transboundary management of natural resources and the importance of a “One Health” approach. In: Fearn E (ed.) State of the wild: a global portrait of wildlife, wildlands, and oceans. Island, Washington, DCGoogle Scholar
  58. Philippa J, Fournier-Chambrillon C, Fournier P et al (2008) Serologic survey for selected viral pathogens in free-ranging endangered European mink (Mustela lutreola) and other mustelids fro the South-Western France. J Wildl Dis 44:791–801PubMedGoogle Scholar
  59. Poss M, Biek R, Rodrigo A (2002) Viruses as evolutionary tools to monitor population dynamics. In: Aguirre AA, Ostfeld RS, Tabor GM et al (eds.) Conservation medicine: ecological health in practice. Oxford University Press, Oxford, pp 118–129Google Scholar
  60. Poulin R (2003) The decay of similarity with geographical distance in parasite communities of vertebrate hosts. J Biogeogr 30:1609–1615CrossRefGoogle Scholar
  61. Poulin R (2007a) Are there general laws in parasite ecology? Parasitology 134:763–776PubMedCrossRefGoogle Scholar
  62. Poulin R (2007b) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  63. Poulin R (2010) Decay of similarity with host phylogenetic distance in parasite faunas. Parasitology 137:733–741PubMedCrossRefGoogle Scholar
  64. Real LA, Biek R (2007) Infectious disease modeling and the dynamics of transmission. In: Childs JE, Mackenzie JS, Richt JA (eds.) Wildlife and emerging zoonotic diseases: the biology, circumstance and consequences of cross-species transmission. Springer, Heidelberg, pp 33–50CrossRefGoogle Scholar
  65. Real LA, Henderson JC, Biek R et al (2005) Unifying the spatial population dynamics and molecular evolution of epidemic rabies virus. Proc Natl Acad Sci USA 102:12107–12111PubMedCrossRefGoogle Scholar
  66. Richomme C, Gauthier D, Fromont E (2006) Contact rates and exposure to inter-species disease transmission in mountain ungulates. Epidemiol Infect 134:21–30PubMedCrossRefGoogle Scholar
  67. Roche B, Rohani P (2010) Environmental transmission scrambles coexistence patterns of avian influenza viruses. Epidemics 2:92–98PubMedCrossRefGoogle Scholar
  68. Taylor LH, Latham SM, Woolhouse MEJ (2001) Risk factors for human disease emergence. Proc R Soc Lond Ser B 356:983–989Google Scholar
  69. Thomson JN (2005) Coevolution: the geographic mosaic of coevolutionary arms races. Curr Biol 15:992–994CrossRefGoogle Scholar
  70. Tompkins DM, Dobson AP, Arneberg P et al (2002) Parasites and host population dynamics. In: Hudson PJ, Rizzoli A, Grenfell BT et al (eds.) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 45–62Google Scholar
  71. Van Kerkhove MD, Vong S, Guitian J et al (2009) Poultry movement networks in Cambodia: implications for surveillance and control of highly pathogenic avian influenza (HPAI/H5N1). Vaccine 27:6345–6352PubMedCrossRefGoogle Scholar
  72. Vosloo W, Bastos AD, Boshoff CI (2006) Retrospective genetic analysis of SAT-1 type foot-and-mouth disease outbreaks in southern Africa. Arch Virol 151:285–298PubMedCrossRefGoogle Scholar
  73. Wang L-F, Eaton BT (2007) Bats, civets and the emergence of SARS. In: Childs JE, Mackenzie JS, Richt JA (eds.) Wildlife and emerging zoonotic diseases: the biology, circumstance and consequences of cross-species transmission. Springer, Heidelberg, pp 325–344CrossRefGoogle Scholar
  74. Wang G, Zhang D, Li L et al (2008) H5N1 avian influenza re-emergence of Lake Qinghai: phylogenetic and antigenic analyses of the newly isolated viruses and roles of migratory birds in virus circulation. J Gen Virol 89:697–702PubMedCrossRefGoogle Scholar
  75. Webster RG, Govorkova EA (2006) H5N1 influenza – continuing evolution and spread. N Engl J Med 21:2174–2177CrossRefGoogle Scholar
  76. Webster RG, Bean WJ, Gorman OT et al (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179PubMedGoogle Scholar
  77. Woolhouse ME (2008) Emerging diseases go global. Nature 451:898–899PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alexandre Caron
    • 1
    • 2
  • Serge Morand
    • 2
    • 3
  • Michel de Garine-Wichatitsky
    • 1
    • 2
  1. 1.Cirad AGIRsHarareZimbabwe
  2. 2.Cirad AGIRsMontpellierFrance
  3. 3.Institut des Sciences de l’Evolution, CNRS-IRD-UM2, CC65Université Montpellier 2MontpellierFrance

Personalised recommendations