Tactile Antennal Learning in the Honey Bee

Chapter

Abstract

The different forms of tactile antennal learning in the honey bee are based on operant activity of the antennae. Flexible motor programs of the antennae are used for monitoring multimodal signals in the space around the head.

Bees can learn the three-dimensional location of an object within the reach of the antennae by touching it frequently. During operant conditioning bees learn that antennal contacts with an object lead to a sucrose reward. Operant antennal conditioning is side specific and bees learn to discriminate between different objects. Operant antennal conditioning can be reduced to conditioning of the activity of the fast flagellum flexor muscle (FFF muscle) which is innervated by a single motoneuron.

Using the proboscis extension reflex (PER) bees can be conditioned to discriminate between different surface structures, forms, sizes and locations of objects. The characteristics of PER conditioning are similar to those of olfactory PER conditioning under laboratory conditions. Mechanoreceptors on the antennal tip are used for surface discrimination. Bees that discriminate between different surface structures show characteristic antennal scanning movements.

Keywords

Operant Conditioning Proboscis Extension Response Sucrose Reward Proboscis Extension Response Antennal Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AMMC

Antennal-mechanosensory motor center

MB

Mushroom bodies

PER

Proboscis extension reflex

References

  1. 1.
    Ai H, Nishino H, Itoh T (2007) Topographic organization of sensory afferents of Johnston’s organ in the honeybee brain. J Comp Neurol 502(6):1030–1046PubMedCrossRefGoogle Scholar
  2. 2.
    Erber J, Pribbenow B (2000) Antennal movements in the honey bee: how complex tasks are solved by a simple neuronal system. In: Prerational intelligence: adaptive behavior and intelligent systems without symbols and logic. Kluwer, Dordrecht, pp 109–121Google Scholar
  3. 3.
    Erber J, Masuhr T, Menzel R (1980) Localization of short-term-memory in the brain of the bee, Apis mellifera 10. August 2011 11:15. Physiol Entomol 5(4):343–358CrossRefGoogle Scholar
  4. 4.
    Erber J, Pribbenow B, Bauer A, Kloppenburg P (1993) Antennal reflexes in the honeybee – tools for studying the nervous-system. Apidologie 24(3):283–296CrossRefGoogle Scholar
  5. 5.
    Erber J, Pribbenow B, Grandy K, Kierzek S (1997) Tactile motor learning in the antennal system of the honeybee (Apis mellifera L.). J Comp Physiol A 181(4):355–365CrossRefGoogle Scholar
  6. 6.
    Erber J, Kierzek S, Sander E, Grandy K (1998) Tactile learning in the honeybee. J Comp Physiol A 183(6):737–744CrossRefGoogle Scholar
  7. 7.
    Erber J, Pribbenow B, Kisch J, Faensen D (2000) Operant conditioning of antennal muscle activity in the honey bee (Apis mellifera L.). J Comp Physiol A 186(6):557–565CrossRefGoogle Scholar
  8. 8.
    Erber J, Hoormann J, Scheiner R (2006) Phototactic behaviour correlates with gustatory responsiveness in honey bees (Apis mellifera L.). Behav Brain Res 174(1):174–180PubMedCrossRefGoogle Scholar
  9. 9.
    Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2(1):74–78PubMedCrossRefGoogle Scholar
  10. 10.
    Hammer M (1997) The neural basis of associative reward learning in honeybees. Trends Neurosci 20(6):245–252PubMedCrossRefGoogle Scholar
  11. 11.
    Haupt SS (2007) Central gustatory projections and side-specificity of operant antennal muscle conditioning in the honeybee. J Comp Physiol A 193(5):523–535PubMedCrossRefGoogle Scholar
  12. 12.
    Kevan PG, Lane MA (1985) Flower petal microtexture is a tactile cue for bees. Proc Natl Acad Sci USA 82(14):4750–4752PubMedCrossRefGoogle Scholar
  13. 13.
    Kisch J, Erber J (1999) Operant conditioning of antennal movements in the honey bee. Behav Brain Res 99(1):93–102PubMedCrossRefGoogle Scholar
  14. 14.
    Kisch J, Haupt SS (2009) Side-specific operant conditioning of antennal movements in the honey bee. Behav Brain Res 196(1):131–133PubMedCrossRefGoogle Scholar
  15. 15.
    Kloppenburg P (1995) Anatomy of the antennal motoneurons in the brain of the honeybee (Apis mellifera). J Comp Neurol 363(2):333–343PubMedCrossRefGoogle Scholar
  16. 16.
    Komischke B, Sandoz JC, Malun D, Giurfa M (2005) Partial unilateral lesions of the mushroom bodies affect olfactory learning in honeybees Apis mellifera L. Eur J Neurosci 21(2):477–485PubMedCrossRefGoogle Scholar
  17. 17.
    Maronde U (1991) Common projection areas of antennal and visual pathways in the honeybee brain, Apis mellifera. J Comp Neurol 309(3):328–340PubMedCrossRefGoogle Scholar
  18. 18.
    Menzel R, Manz G (2005) Neural plasticity of mushroom body-extrinsic neurons in the honeybee brain. J Exp Biol 208(Pt 22):4317–4332PubMedCrossRefGoogle Scholar
  19. 19.
    Menzel R, Müller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19:379–404PubMedCrossRefGoogle Scholar
  20. 20.
    Menzel R, Erber J, Masuhr T (1974) Learning and memory in the honey bee. In: Barton Browne L (ed) Experimental analysis of insect behavior. Springer, Berlin/Heidelberg/New York, pp 195–217Google Scholar
  21. 21.
    Menzel R, Durst C, Erber J, Eichmüller S, Hammer M et al (1994) The mushroom bodies in the honey bee: from molecules to behavior. Fortschr Zool 39:81–102Google Scholar
  22. 22.
    Mujagic S, Erber J (2009) Sucrose acceptance, discrimination and proboscis responses of honey bees (Apis mellifera L.) in the field and the laboratory. J Comp Physiol A 195(4):325–339PubMedCrossRefGoogle Scholar
  23. 23.
    Page RE, Erber J, Fondrk MK (1998) The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J Comp Physiol A 182(4):489–500CrossRefGoogle Scholar
  24. 24.
    Page RE, Scheiner R, Erber J, Amdam GV (2006) The development and evolution of division of labor and foraging specialization in a social insect (Apis mellifera L.). Curr Top Dev Biol 74:253–286PubMedCrossRefGoogle Scholar
  25. 25.
    Pribbenow B, Erber J (1996) Modulation of antennal scanning in the honeybee by sucrose stimuli, serotonin, and octopamine: behavior and electrophysiology. Neurobiol Learn Mem 66(2):109–120PubMedCrossRefGoogle Scholar
  26. 26.
    Rehder V, Bicker G, Hammer M (1987) Serotonin-immunoreactive neurons in the antennal lobes and suboesophageal ganglion of the honey bee. Cell Tissue Res 247:59–66CrossRefGoogle Scholar
  27. 27.
    Schäfer S, Rehder V (1989) Dopamine-like immunoreactivity in the brain and suboesophageal ganglion of the honeybee. J Comp Neurol 280(1):43–58PubMedCrossRefGoogle Scholar
  28. 28.
    Scheiner R, Erber J, Page RE Jr (1999) Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). J Comp Physiol A 185(1):1–10PubMedCrossRefGoogle Scholar
  29. 29.
    Scheiner R, Page RE Jr, Erber J (2001) The effects of genotype, foraging role, and sucrose responsiveness on the tactile learning performance of honey bees (Apis mellifera L.). Neurobiol Learn Mem 76(2):138–150PubMedCrossRefGoogle Scholar
  30. 30.
    Scheiner R, Page RE Jr, Erber J (2001) Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains. Behav Brain Res 120(1):67–73PubMedCrossRefGoogle Scholar
  31. 31.
    Scheiner R, Weiß A, Malun D, Erber J (2001) Learning in honey bees with brain lesions: how partial mushroom-body ablations affect sucrose responsiveness and tactile antennal learning. Anim Cogn 4:227–235CrossRefGoogle Scholar
  32. 32.
    Scheiner R, Page RE, Erber J (2004) Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie 35(2):133–142CrossRefGoogle Scholar
  33. 33.
    Scheiner R, Kuritz-Kaiser A, Menzel R, Erber J (2005) Sensory responsiveness and the effects of equal subjective rewards on tactile learning and memory of honeybees. Learn Mem 12(6):626–635PubMedCrossRefGoogle Scholar
  34. 34.
    Scheiner R, Schnitt S, Erber J (2005) The functions of antennal mechanoreceptors and antennal joints in tactile discrimination of the honeybee (Apis mellifera L.). J Comp Physiol A 191(9):857–864PubMedCrossRefGoogle Scholar
  35. 35.
    Schürmann FW, Erber J (1990) FMRFamide-like immunoreactivity in the brain of the honeybee (Apis mellifera) – a light-microscopy and electron-microscopy study. Neuroscience 38(3):797–807PubMedCrossRefGoogle Scholar
  36. 36.
    Schürmann FW, Klemm N (1984) Serotonin-immunoreactive neurons in the brain of the honeybee. J Comp Neurol 225(4):570–580PubMedCrossRefGoogle Scholar
  37. 37.
    Sinakevitch I, Niwa M, Strausfeld NJ (2005) Octopamine-like immunoreactivity in the honey bee and cockroach: comparable organization in the brain and subesophageal ganglion. J Comp Neurol 488(3):233–254PubMedCrossRefGoogle Scholar
  38. 38.
    Snodgrass RE (1956) Anatomy of the honey bee. Comstock Publishing Associates, IthacaGoogle Scholar
  39. 39.
    Srinivasan MV (1994) Pattern-recognition in the honeybee – recent progress. J Insect Physiol 40(3):183–194CrossRefGoogle Scholar
  40. 40.
    Wehner R (1967) Pattern recognition in bees. Nature 215(5107):1244PubMedCrossRefGoogle Scholar
  41. 41.
    Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology), vol 7/6 C. Springer, Berlin/Heidelberg/New York, pp 287–616CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institut für ÖkologieTechnische Universität BerlinBerlinGermany

Personalised recommendations