Advertisement

The Digital Honey Bee Brain Atlas

  • Jürgen Rybak
Chapter

Abstract

For a comprehensive understanding of brain function, compiling data from a range of experiments is necessary. Digital brain atlases provide useful reference systems at the interface of neuroanatomy, neurophysiology, behavioral biology and neuroinformatics. Insect brains are particularly useful because they constitute complete three-dimensional references for the integration of morphological and functional data. Image acquisition is favored by small sized brains permitting whole brain scans using confocal microscopy. Insect brain atlases thus serve different purposes, e.g. quantitative volume analyses of brain neuropils for studying closely related species, developmental processes and neuronal plasticity; documenting and storing the Gestalt and spatial relations of neurons, neural networks and neuropils; structuring large amounts of anatomical and physiological data, thus providing a repository for data sharing among researchers. This chapter focuses on the spatial relations of neurons in the honey bee brain using the Honey bee Standard Brain (HSB). The integration of neurons into the HSB requires standardized image processing, computer algorithms and protocols that aid reconstruction and visualization. A statistical shape model has been developed in order to facilitate the segmentation process. Examples from the olfactory and mechanosensory pathways in the bee brain and the organization of the mushroom bodies (MBs) are used to illustrate the implementation and strength of the HSB. An outline will be given for the use of the brain atlas to link semantic information (e.g. from physiology, biochemistry, genetics) and neuronal morphology.

Keywords

Mushroom Body Antennal Lobe Brain Atlas Statistical Shape Model Kenyon Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations (Excluding Brain Areas)

GABA

Gamma-aminobutyric acid (neurotransmitter)

HSB

Honey bee Standard Brain

ISA

Iterative Shape Averaging

SSM

Statistical shape model

VIB

Virtual insect brain

References

  1. 1.
    Abel R, Rybak J, Menzel R (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 437(3):363–383PubMedCrossRefGoogle Scholar
  2. 2.
    Ai H (2010) Vibration-processing interneurons in the honeybee brain. Front Syst Neurosci 3(19):1–10PubMedGoogle Scholar
  3. 3.
    Ai H, Rybak J, Menzel R, Itoh T (2009) Response characteristics of vibration-sensitive interneurons related to Johnston’s organ in the honeybee, Apis mellifera. J Comp Neurol 515(2):145–160PubMedCrossRefGoogle Scholar
  4. 4.
    Bertrand L, Nissanov J (2008) The neuroterrain 3D mouse brain atlas. Front Neuroinform 2(3):1–8Google Scholar
  5. 5.
    Boline J, Lee E-F, Toga AW (2008) Digital atlases as a framework for data sharing. Front Neurosci 2(1):100–6Google Scholar
  6. 6.
    Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A et al (2005) Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 492(1):1–19PubMedCrossRefGoogle Scholar
  7. 7.
    Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A et al (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol 8(10):1–17CrossRefGoogle Scholar
  8. 8.
    el Jundi B, Heinze S, Lenschow C, Kurylas A, Rohlfing T et al (2010) The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis. Front Syst Neurosci 3(21):1–15Google Scholar
  9. 9.
    el Jundi B, Huetteroth W, Kurylas AE, Schachtner J (2009) Anisometric brain dimorphism revisited: implementation of a volumetric 3D standard brain in Manduca sexta. J Comp Neurol 517(2):210–225PubMedCrossRefGoogle Scholar
  10. 10.
    Galizia CG, McIlwrath SL, Menzel R (1999) A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy. Cell Tissue Res 295(3):383–394PubMedCrossRefGoogle Scholar
  11. 11.
    Galizia CG, Rössler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55(1):399–420PubMedCrossRefGoogle Scholar
  12. 12.
    Ganeshina O, Menzel R (2001) GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J Comp Neurol 437(3):335–349PubMedCrossRefGoogle Scholar
  13. 13.
    Grünewald B (1999) Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera. J Comp Neurol 404(1):114–126PubMedCrossRefGoogle Scholar
  14. 14.
    Ito K (2010) Technical and organizational considerations for the long-term maintenance and development of the digital brain atlases and web-based databases. Front Syst Neurosci 4(26):1–15Google Scholar
  15. 15.
    Jenett A, Schindelin J, Heisenberg M (2006) The Virtual Insect Brain protocol: creating and comparing standardized neuroanatomy. BMC Bioinforma 7(1):544CrossRefGoogle Scholar
  16. 16.
    Jones AR, Overly CC, Sunkin SM (2009) The allen brain atlas: 5 years and beyond. Nat Rev Neurosci 10(11):821–828PubMedCrossRefGoogle Scholar
  17. 17.
    Joshi SH, Van Horn J, Toga AW (2009) Interactive exploration of neuroanatomical meta-spaces. Front in Neuroinform 3(38):1–10Google Scholar
  18. 18.
    Kenyon CF (1896) The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda. J Comp Neurol 6:133–210CrossRefGoogle Scholar
  19. 19.
    Kirschner S, Kleineidam CJ, Zube C, Rybak J, Grünewald B et al (2006) Dual olfactory pathway in the honeybee, Apis mellifera. J Comp Neurol 499(6):933–952PubMedCrossRefGoogle Scholar
  20. 20.
    Krofczik S, Menzel R, Nawrot MP (2009) Rapid odor processing in the honeybee antennal lobe network. Front Comput Neurosci 2(9):1–13Google Scholar
  21. 21.
    Kurylas AE, Rohlfing T, Krofczik S, Jenett A, Homberg U (2008) Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res 333(1):125–145PubMedCrossRefGoogle Scholar
  22. 22.
    Kuß A, Hege H-C, Krofczik S, Börner J (2007) Pipeline for the creation of surface-based averaged brain atlases. Proceedings of WSCG 2007 - the 15-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. Plzen, Czech Republic. 15:17–24.Google Scholar
  23. 23.
    Kuß A, Prohaska S, Meyer B, Rybak J, Hege H-C (2008) Ontology-based visualization of hierarchical neuroanatomical structures. In: Botha CP et al (eds) Proc Visual Computing for Biomedicine, Delft, pp 177–184Google Scholar
  24. 24.
    Kvello P, Lofaldli BB, Rybak J, Menzel R, Mustaparta H (2009) Digital, three-dimensional average shaped atlas of the Heliothis virescens brain with integrated gustatory and olfactory neurons. Front Syst Neurosci 3(14):1–14PubMedCrossRefGoogle Scholar
  25. 25.
    Lamecker H, Lange T, Seebaß M, Eulenstein S, Westerhoff M et al (2003) Automatic segmentation of the liver for preoperative planning of resections. Ios Press, Newport Beach. 171–173Google Scholar
  26. 26.
    Larson SD, Martone ME (2009) Ontologies for neuroscience: what are they and what are they good for? Front Neurosci 3:1, 60–67Google Scholar
  27. 27.
    Maronde U (1991) Common projection areas of antennal and visual pathways in the honeybee brain, Apis mellifera. J Comp Neurol 309(3):328–340PubMedCrossRefGoogle Scholar
  28. 28.
    Maye A, Wenckebach T, Hege H (2006) Visualization, reconstruction, and integration of neuronal structures in digital brain atlases. Int J Neurosci 116:431–459PubMedCrossRefGoogle Scholar
  29. 29.
    Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 8(2):53–62PubMedCrossRefGoogle Scholar
  30. 30.
    Menzel R (2009) Conditioning: simple neural circuits in the honeybee. In: Squire LR (ed) Encyclopedia of neuroscience, vol 3. Academic, Oxford, pp 43–47CrossRefGoogle Scholar
  31. 31.
    Mobbs PG (1982) The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Phil Trans R Soc Lond B 298:309–354CrossRefGoogle Scholar
  32. 32.
    Müller D, Abel R, Brandt R, Zockler M, Menzel R (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J Comp Physiol A 188(5):359–370PubMedCrossRefGoogle Scholar
  33. 33.
    Münch D (2008) Intrazelluläre Färbungen und 3D Strukturanalyse von olfaktorischen Projektionsneuronen im Bienengehirn. MSc, FU Berlin, BerlinGoogle Scholar
  34. 34.
    Namiki S, Haupt SS, Kazawa T, Takashima A, Ikeno H et al (2009) Reconstruction of virtual neural circuits in an insect brain. Front Neurosci 3(2):206–213PubMedCrossRefGoogle Scholar
  35. 35.
    Neubert K (2007) Model-based autosegmentation of brain structures in the honeybee, Apis mellifera. FU Berlin, BerlinGoogle Scholar
  36. 36.
    Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci 27(43):11736–11747PubMedCrossRefGoogle Scholar
  37. 37.
    Peng H (2008) Bioimage informatics: a new area of engineering biology. Bioinformatics 24(17):1827–1836PubMedCrossRefGoogle Scholar
  38. 38.
    Rein K, Zockler M, Mader M, Grubel C, Heisenberg M (2002) The Drosophila standard brain. Curr Biol 12:227–231PubMedCrossRefGoogle Scholar
  39. 39.
    Rohlfing T, Brandt R, Maurer Jr. CR, Menzel R (2001) Bee brains, B-splines and computational democracy: generating an average shape atlas. In: Proceedings of the IEEE workshop on mathematical methods in Biomedical Image Analysis, Kauai, Hawaii. 187–194Google Scholar
  40. 40.
    Rybak J (1994) Die strukturelle Organisation der Pilzkörper und synaptische Konnektivität protocerebraler Interneuronen im Gehirn der Honigbiene, Apis mellifera: eine licht- und elektronenmikroskopische Studie. Dissertation, FU Berlin, BerlinGoogle Scholar
  41. 41.
    Rybak J, Kuss A, Lamecker H, Zachow S, Hege HC et al (2010) The digital bee brain: integrating and managing neurons in a common 3D reference system. Front Syst Neurosci 4(30):1–14Google Scholar
  42. 42.
    Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. J Comp Neurol 334(3):444–465PubMedCrossRefGoogle Scholar
  43. 43.
    Rybak J, Menzel R (2010) Mushroom body of the honeybee. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits. Oxford University Press, New York, pp 433–440Google Scholar
  44. 44.
    Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246(3):287–300PubMedCrossRefGoogle Scholar
  45. 45.
    Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  46. 46.
    Strausfeld NJ (2002) Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. J Comp Neurol 450(1):4–33PubMedCrossRefGoogle Scholar
  47. 47.
    Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system – an approach to cerebral imaging. Thieme Medical Publishers, New YorkGoogle Scholar
  48. 48.
    Toga AW, Mazziotta JC (2002) Brain mapping: the methods, 2nd edn. Academic Press, San DiegoGoogle Scholar
  49. 49.
    Toga AW, Thompson PM (2001) Maps of the brain. Anat Rec 265(2):37–53PubMedCrossRefGoogle Scholar
  50. 50.
    Vowles DM (1955) The structure and connections of the corpora pedunculata in bees and ants. Q J Microsc Sci 96:239–255Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Evolutionary NeuroethologyMax-Planck-Institute for Chemical EcologyJenaGermany

Personalised recommendations