Skip to main content

Brain Structure and Meditation: How Spiritual Practice Shapes the Brain

Part of the Studies in Neuroscience, Consciousness and Spirituality book series (SNCS,volume 1)

Abstract

Meditation practices can be conceived as specific types of mental training with measureable effects on the function and structure of the human brain. This contribution narratively reviews recent morphometric studies that compared experienced meditators with matched controls. While meditation types and measures differed between studies, results were remarkably consistent. Differences in gray matter (GM) volume and density were found in circumscribed brain regions which are involved in interoception and in the regulation of arousal and emotions, namely insula, hippocampus, prefrontal cortex, and brainstem. The normal age-related decline in GM volume and in attentional performance was present in controls but not in meditators. These findings need to be replicated in longitudinal studies in order to confirm the causal role of meditation training. Future research has to elucidate effects of these structural changes on neural activity and mental functioning during behavioral tasks.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Cohen, S., & Williamson, G.M. (1988). Perceived stress in a probability sample of the United States. In S. Spacapan & S. Oskamp (Eds.), The social psychology of health (pp. 31–67). Newbury Park: Sage.

    Google Scholar 

  • Craig, A.D. (2009). How do you feel – Now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.

    Article  PubMed  Google Scholar 

  • Driemeyer, J., Boyke, J., Gaser, C., Buchel, C., & May, A. (2008). Changes in gray matter induced by learning – Revisited. PloS One, 3(7), e2669.

    Article  PubMed  Google Scholar 

  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23(27), 9240–9245.

    PubMed  Google Scholar 

  • Grant, J.A., & Rainville, P. (2009). Pain sensitivity and analgesic effects of mindful states in Zen meditators: A cross-sectional study. Psychosomatic Medicine, 71, 106–114.

    Article  PubMed  Google Scholar 

  • Grant, J., Duerden, E., Duncan, G., & Rainville, P. (2008, August 17–22). Cortical thickness and pain sensitivity in advanced Zen meditators. Poster presented at the 12th World Congress on Pain, Glasgow.

    Google Scholar 

  • Hölzel, B.K., Ott, U., Hempel, H., Hackl, A., Wolf, K., Stark, R., et al. (2007). Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neuroscience Letters, 421, 16–21.

    Article  PubMed  Google Scholar 

  • Hölzel, B.K., Ott, U., Gard, T., Hempel, H., Weygandt, M., Morgen, K., et al. (2008). Investigation of mindfulness meditation practitioners with voxel-based morphometry. Social Cognitive and Affective Neuroscience, 3, 55–61.

    Article  PubMed  Google Scholar 

  • Hölzel, B.K., Carmody, J., Evans, K.C., Hoge, E.A., Dusek, J.A., Morgan, L., Pitman, R.K., & Lazar, S.W. (2010). Stress reduction correlates with structural changes in the amygdala. Social Cognitive and Affective Neuroscience, 5, 11–17.

    Article  PubMed  Google Scholar 

  • Hölzel, B.K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S.M., Gard, T., & Lazar, S.W. (2011). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Research: Neuroimaging, 191, 36–42.

    Google Scholar 

  • Ilg, R., Wohlschlager, A.M., Gaser, C., Liebau, Y., Dauner, R., Woller, A., et al. (2008). Gray matter increase induced by practice correlates with task-specific activation: A combined functional and morphometric magnetic resonance imaging study. Journal of Neuroscience, 28(16), 4210–4215.

    Article  PubMed  Google Scholar 

  • Kabat-Zinn, J. (1990). Full catastrophe living. New York: Delta Publishing.

    Google Scholar 

  • Lazar, S.W., Kerr, C.E., Wasserman, R.H., Gray, J.R., Greve, D.N., Treadway, M.T., et al. (2005). Meditation experience is associated with increased cortical thickness. NeuroReport, 16, 1893–1897.

    Article  PubMed  Google Scholar 

  • Lazar, S.W., Hölzel, B.K., & Evans, K.C. (2009, March 18–22). Neurobiological underpinnings of mindfulness and meditation. Paper presented at the 7th Annual International Scientific Conference of the Center for Mindfulness in Medicine, Health Care, and Society, Worcester.

    Google Scholar 

  • Luders, E., Toga, A.W., Lepore, N., & Gaser, C. (2009). The underlying anatomical correlates of long-term meditation: Larger hippocampal and frontal volumes of gray matter. NeuroImage, 45, 672–678.

    Article  PubMed  Google Scholar 

  • MacCoon, D.G., Sullivan, J.C., Davidson, R.J., Stoney, C.M., Christmas, P.D., Thurlow, J.P., & Lutz. A. (2009, September 1). Health-enhancement program (HEP) guidelines. Permanent URL: http://digital.library.wisc.edu/1793/28198.

  • Maguire, E.A., Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R.S.J., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences USA, 97(8), 4398–4403.

    Article  Google Scholar 

  • Mechelli, A., Crinion, J.T., Noppeney, U., O’Doherty, J., Ashburner, J., Frackowiak, R.S., et al. (2004). Structural plasticity in the bilingual brain. Proficiency in a second language and age at acquisition affect grey-matter density. Nature, 431, 757.

    Article  PubMed  Google Scholar 

  • Milad, M.R., Quinn, B.T., Pitman, R.K., Orr, S.P., Fischl, B., & Rauch, S.L. (2005). Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proceedings of the National Academy of Sciences USA, 102(30), 10706–10711.

    Article  Google Scholar 

  • Newberg, A.B., & Iversen, J. (2003). The neural basis of the complex mental task of meditation: Neurotransmitter and neurochemical considerations. Medical Hypotheses, 61(2), 282–291.

    Article  PubMed  Google Scholar 

  • Pagnoni, G., & Cekic, M. (2007). Age effects on gray matter volume and attentional performance in Zen meditation. Neurobiology of Aging, 28, 1623–1627.

    Article  PubMed  Google Scholar 

  • Vestergaard-Poulsen, P., van Beek, M., Skewes, J., Bjarkam, C.R., Stubberup, M., Bertelsen, J., et al. (2009). Long-term meditation is associated with increased gray matter density in the brain stem. NeuroReport, 20, 170–174.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Ott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Ott, U., Hölzel, B.K., Vaitl, D. (2011). Brain Structure and Meditation: How Spiritual Practice Shapes the Brain. In: Walach, H., Schmidt, S., Jonas, W. (eds) Neuroscience, Consciousness and Spirituality. Studies in Neuroscience, Consciousness and Spirituality, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2079-4_9

Download citation

Publish with us

Policies and ethics