Why Specific ETOs are Advantageous for NMR and Molecular Interactions

  • Philip E. Hoggan
  • Ahmed Bouferguène
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 22)


This paper advocates use of the atomic orbitals which have direct physical interpretation, i.e., Coulomb Sturmians and hydrogen-like orbitals. They are exponential type orbitals (ETOs). Their radial nodes are shown to be essential in obtaining accurate local energy for Quantum Monte Carlo, molecular interactions a nuclear and shielding tensors for NMR work. The NMR work builds on a 2003 French PhD and many numerical results were published by 2007. The improvements in this paper are noteworthy, the key being the actual basis function choice. Until 2008, their products on different atoms were difficult to manipulate for the evaluation of two-electron integrals. Coulomb resolutions provide an excellent approximation that reduces these integrals to a sum of one-electron overlap-like integral products that each involve orbitals on at most two centers. Such two-center integrals are separable in prolate spheroidal co-ordinates. They are thus readily evaluated. Only these integrals need to be re-evaluated to change basis functions. In this paper, a review of the translation procedures for Slater type orbitals (STO) and for Coulomb Sturmians follows that of the more recent application to ETOs of a particularly convenient Coulomb resolution.


Density Functional Theory Quantum Monte Carlo Trial Wave Function Slater Type Orbital Partial Positive Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alfè D, Gillan MJ (2004) Phys Rev B 70:161101CrossRefGoogle Scholar
  2. 2.
    Avery J, Avery J (2007) Generalised sturmians and atomic spectra. World Scientific, SingaporeGoogle Scholar
  3. 3.
    Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41CrossRefGoogle Scholar
  4. 4.
    Berlu L (2003) PhD thesis, Université Blaise Pascal, Clermont Ferrand, France, Directed by P. E. Hoggan only.Google Scholar
  5. 5.
    Berlu L, Hoggan PE (2003) J Theor Comput Chem 2:147CrossRefGoogle Scholar
  6. 6.
    Bonaccorsi R, Scrocco E, Tomasi J (1970) J Chem Phys 52:5270CrossRefGoogle Scholar
  7. 7.
    BouferguèneA (1992) PhD thesis, Nancy I University, FranceGoogle Scholar
  8. 8.
    (a) Bouferguène A,  Fares M,  Hoggan PE (1996) Stater type orbital package for general molecular electronic structure calculations ab initio. Int J Quantum Chem 57:801 (b) Bouferguène A, Hoggan PE (1996) STOP slater type orbital package program description. Q.C.P.E. Quart Bull 16:1Google Scholar
  9. 9.
    Bouferguène A, Rinaldi DL (1994) Int J Quantum Chem 50:21CrossRefGoogle Scholar
  10. 10.
    Boys SF (1950) Proc Roy Soc [London] A 200:542Google Scholar
  11. 11.
    Boys SF, Cook GB, Reeves CM, Shavitt I (1956) Automated molecular electronic structure calculations. Nature 178:1207Google Scholar
  12. 12.
    Carbó R, Leyda L, Arnau M (1980) Int J Quantum Chem 17:1185CrossRefGoogle Scholar
  13. 13.
    Cesco JC, Pérez JE, Denner CC, Giubergia GO, Rosso AE (2005) Appl Num Math 55(2):173 and references thereinGoogle Scholar
  14. 14.
    Chuluunbaatar O, Joulakian B (2010) Three center continuum wave-function: application to first ionisation of molecular orbitals of CO2 by electron impact. J Phys B 43:155201CrossRefGoogle Scholar
  15. 15.
    Clementi E, Raimondi DL (1963) J Chem Phys 38:2686CrossRefGoogle Scholar
  16. 16.
    Cohen AJ, Handy NC (2002) J Chem Phys 117:1470 Watson MA, Cohen AJ, Handy NC (2003) J Chem Phys 119:6475 Watson MA, Cohen AJ, Handy NC, Helgaker T (2004) J Chem Phys 120:7252Google Scholar
  17. 17.
    Condon EU, Shortley GH (1978) The theory of atomic spectra. Cambridge University Press, Cambridge, UK, p 48Google Scholar
  18. 18.
    Csizmadia IG, Harrison MC, Moskowitz JW, Seung S, Sutcliffe BT, Barnett MP (1963) POLYATOM: Program set for non-empirical molecular calculations. Massachusetts Institute of Technology Cambridge, 02139 Massachusetts. QCPE No 11, Programme 47 and Barnett MP Rev Mod Phys 35:571Google Scholar
  19. 19.
    Ditchfield R (1972) J Chem Phys 56:5688CrossRefGoogle Scholar
  20. 20.
    Ditchfield R (1974) Mol Phys 27:789CrossRefGoogle Scholar
  21. 21.
    Drummond ND, Towler MD, Needs RJ (2004) Phys Rev B 70:235119CrossRefGoogle Scholar
  22. 22.
    Fernández Rico J, López R, Aguado A, Ema I, Ramírez G (1998) J Comput Chem 19(11):1284Google Scholar
  23. 23.
    Fernández Rico J, López R, Ramírez G, Ema I, Ludeña EV (2004) J Comput Chem 25:1355, and online archiveGoogle Scholar
  24. 24.
    Foulkes, WMC, Mitas L, Needs RJ, Rajagopal G (2001) Rev Mod Phys 73:33CrossRefGoogle Scholar
  25. 25.
    Frisch MJ (2004) Gaussian 03, Revision C.02. Gaussian, Inc., WallingfordGoogle Scholar
  26. 26.
    Gaunt JA (1929) Phil Trans R Soc A 228:151CrossRefGoogle Scholar
  27. 27.
    Gill PMW, Gilbert ATB (2009) Resolutions of the Coulomb Operator. II The Laguerre Generator. Chem Phys (Accepted, 2008) 130(23)Google Scholar
  28. 28.
    Glushov VN, Wilson S (2002) Int J Quantum Chem 89:237, (2004) 99:903, (2007) 107:in press. Adv Quantum Chem (2001) 39:123CrossRefGoogle Scholar
  29. 29.
    Guseinov I, Seckin Gorgun N (2010) J Mol Model 17(16):1517–1524Google Scholar
  30. 30.
    Hamouda AB, Absi N, Hoggan PE, Pimpinelli A (2008) Phys Rev B 77:245430CrossRefGoogle Scholar
  31. 31.
    Hehre WJ, Lathan WA, Ditchfield R, Newton MD, Pople JA (1973) GAUSSIAN 70: Ab initio SCF-MO calculations on organic molecules QCPE 11, Programme number 236Google Scholar
  32. 32.
    Hinde RJ (2008) Six dimensional potential energy surface of H2–H2. J Chem Phys 128 (15):154308CrossRefGoogle Scholar
  33. 33.
    Hoggan PE (2004) Int J Quantum Chem 100:218Google Scholar
  34. 34.
    Hoggan PE (2007) Trial wavefunctions for Quantum Monte Carlo simlations over ETOs. AIP Proc 963(2):193–197CrossRefGoogle Scholar
  35. 35.
    Hoggan PE (2010) Four-center Slater type orbital molecular integrals without orbital translations. Int J Quantum Chem 110:98–103CrossRefGoogle Scholar
  36. 36.
    Homeier HHH, Joachim Weniger E, Steinborn EO (1992) Programs for the evaluation of overlap integrals with B functions. Comput Phys Commun 72:269–287; Homeier HHH, Steinborn EO (1993) Programs for the evaluation of nuclear attraction integrals with B functions. Comput Phys Commun 77:135–151Google Scholar
  37. 37.
    Hsing, C-R, Wei C-M, Drummond ND, Needs RJ (2009) Phys Rev B 79:245401CrossRefGoogle Scholar
  38. 38.
    Joudieh N (1998) PhD thesis, Faculté des Sciences de l’Université de Rouen, Rouen, FranceGoogle Scholar
  39. 39.
    Kato T (1957) Commun Pure Appl Math 10:151CrossRefGoogle Scholar
  40. 40.
    Lee RM et al arXiv:1006.1798Google Scholar
  41. 41.
    London F (1937) J Phys Radium 8:397CrossRefGoogle Scholar
  42. 42.
    McLean AD, Yoshimine M, Lengsfield BH, Bagus PS, Liu B (1991) ALCHEMY II. IBM research, Yorktown Heights, MOTECC 91Google Scholar
  43. 43.
    MSc Thesis. Clermont, 2010Google Scholar
  44. 44.
    Needs RJ, Towler MD, Drummond ND, López Ríos P (2010) J Phys:Condens Matter 22:023201; casino website: Accessed 10 Feb 2010
  45. 45.
    Perdew J, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  46. 46.
    PhD Thesis. Clermont, 2009. Available in pdf at
  47. 47.
    Pinchon D, Hoggan PE (2007) J Phys A 40:1597CrossRefGoogle Scholar
  48. 48.
    Pinchon D, Hoggan PE (2007) Int J Quantum Chem 107:2186CrossRefGoogle Scholar
  49. 49.
    Pinchon D, Hoggan PE (2009) Int J Quantum Chem 109:135CrossRefGoogle Scholar
  50. 50.
    Podolanski J (1931) Ann Phys 402(7):868CrossRefGoogle Scholar
  51. 51.
    Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw Hill, New YorkGoogle Scholar
  52. 52.
    Pritchard HO (2001) J Mol Graph Model 19:623Google Scholar
  53. 53.
    Red E, Weatherford CA (2004) Int J Quantum Chem 100:204CrossRefGoogle Scholar
  54. 54.
    Reinhardt P, Hoggan PE (2009) Cusps and derivatives for H2O wave functions using Hartree-Fock Slater code: a density study. Int J Quantum Chem 109:3191–3198CrossRefGoogle Scholar
  55. 55.
    Roothaan CCJ (1951) J Chem Phys 19:1445CrossRefGoogle Scholar
  56. 56.
    Shao Y, White CA, Head-Gordon M (2001) J Chem Phys 114 6572CrossRefGoogle Scholar
  57. 57.
    Shavitt I (1963) In: Alder B, Fernbach S, Rotenberg M (eds) Methods in computational physics, vol 2. Academic, New York, p. 15Google Scholar
  58. 58.
    Slater JC (1930) Phys Rev 36:57CrossRefGoogle Scholar
  59. 59.
    Slater JC (1932) Phys Rev 42:33CrossRefGoogle Scholar
  60. 60.
    Smith SJ, Sutcliffe BT (1997) In: Lipkowtz KB, Boyd BD (eds) The development of computational chemistry in the United Kingdom in Reviews in computational chemistry. VCH Academic Publishers, New YorkGoogle Scholar
  61. 61.
    Stevens RM, Lipscomb, WN (1964) J Chem Phys 40:2238–2247CrossRefGoogle Scholar
  62. 62.
    Stevens RM (1970) The POLYCAL program. J Chem Phys 52:1397CrossRefGoogle Scholar
  63. 63.
    Toulouse, J, Hoggan PE, Reinhardt P, Caffarel M, Umrigar CJ (2011) PTCP, B22Google Scholar
  64. 64.
    Toulouse J, Hoggan PE, Reinhardt P Progress in QMC, ACS (in press 2011)Google Scholar
  65. 65.
    Tully JC (1973) J hem Phys 58:1396Google Scholar
  66. 66.
    Vagranov SA, Gilbert ATB, Duplaxes E, Gill PMW (2008) J Chem Phys 128:201104CrossRefGoogle Scholar
  67. 67.
    Vieille L, Berlu L, Combourieu B, Hoggan PE (2002) J Theor Comput Chem 1(2):295CrossRefGoogle Scholar
  68. 68.
    Weatherford CA, Red E, Joseph D, Hoggan PE (2006) Mol Phys 104:1385CrossRefGoogle Scholar
  69. 69.
    Weniger EJ (1985) J Math Phys 26:276CrossRefGoogle Scholar
  70. 70.
    Weniger EJ, Steinborn EO (1982) Comput Phys Commun 25:149CrossRefGoogle Scholar
  71. 71.
    Weniger EJ, Steinborn EO (1989) J Math Phys 30(4):774CrossRefGoogle Scholar
  72. 72.
    Werner H-J, Knowles PJ, Lindh R, Manby FR et al (2011) MOLPRO, version 2006.1 a package of ab initio programs. Accessed 6 Aug 2011
  73. 73.
    Zaim N (2010) Poster presentation at QSCP XV CambridgeGoogle Scholar
  74. 74.
    Sidi A, Hoggan PE (2011) Int J Pure Appl Math 71:481–498Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Philip E. Hoggan
    • 1
  • Ahmed Bouferguène
    • 2
  1. 1.LASMEA, CNRS and Université Blaise PascalAubièreFrance
  2. 2.University of AlbertaEdmontonCanada

Personalised recommendations