Advertisement

Recombination by Electron Capture in the Interstellar Medium

  • M. C. Bacchus-Montabonel
  • D. Talbi
Chapter
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 22)

Abstract

Rate constants for charge transfer processes in the interstellar medium are calculated using ab-initio molecular calculations. Two important reactions are presented: the recombination of Si2+ and Si3+ ions with atomic hydrogen and helium which is critical in determining the fractional abundances of silicon ions, and the \({\mathrm{C}}^{+} + \mathrm{S} \rightarrow \mathrm{C} +{ \mathrm{S}}^{+}\) reaction, fundamental in both carbon and sulphur chemistry.

Keywords

Rate Coefficient Interstellar Medium Potential Energy Curve Entry Channel Charge Transfer Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was granted access to the HPC resources of [CCRT/CINES/IDRIS] under the allocation i2010081566 made by GENCI [Grand Equipement National de Calcul Intensif]. The support of the COST Action CM0702 CUSPFEL is gratefully acknowledged.

References

  1. 1.
    M.A. Hayes, H. Nussbaumer, Astrophys. J. 161, 287 (1986).Google Scholar
  2. 2.
    G.D. Sandlin, J.D.F. Bartoe, G.F. Baureckner, R. Tousey, M.E. Van Hoosier, Astrophys. J. Suppl. 61, 801 (1986).Google Scholar
  3. 3.
    H. Nussbaumer, Astron. Astrophys. 155, 205 (1986).Google Scholar
  4. 4.
    P. Honvault, M.C. Bacchus-Montabonel, R. McCarroll, J. Phys. B.. 27, 3115 (1994).Google Scholar
  5. 5.
    P. Honvault, M. Gargaud, M.C. Bacchus-Montabonel, R. McCarroll, Astron. Astrophys. 302, 931 (1995).Google Scholar
  6. 6.
    M. Gargaud, M.C. Bacchus-Montabonel, R. McCarroll, J. Chem. Phys. 99, 4495 (1993).CrossRefGoogle Scholar
  7. 7.
    M.C. Bacchus-Montabonel, P. Ceyzeriat, Phys. Rev. A 58, 1162 (1998).Google Scholar
  8. 8.
    N. Vaeck, M.C. Bacchus-Montabonel, E. Baloïtcha, M. Desouter-Lecomte, Phys. Rev. A 63, 042704 (2001).CrossRefGoogle Scholar
  9. 9.
    S.L. Baliunas and S.E. Butler, Astrophys. J. 235, L45 (1980).Google Scholar
  10. 10.
    M.C. Bacchus-Montabonel, Theor. Chem. Acc. 104, 296 (2000); Chem. Phys. 237, 245 (1998).Google Scholar
  11. 11.
    P. Honvault, M.C. Bacchus-Montabonel, M. Gargaud, R. McCarroll, Chem. Phys. 238, 401 (1998).Google Scholar
  12. 12.
    M.C. Bacchus-Montabonel and D. Talbi, Chem. Phys. Lett. 467, 28 (2008).Google Scholar
  13. 13.
    J. Le Bourlot, G. Pineau des Forêts, E. Roueff, D.R. Flower, Astron. Astrophys. 267, 233 (1993).Google Scholar
  14. 14.
    D. Teyssier, D. Fosse, M. Gerin, J. Pety, A. Abergel, E. Roueff, Astron. Astrophys. 417, 135 (2004).Google Scholar
  15. 15.
    B. Huron, J.P. Malrieu, P. Rancurel, J. Chem. Phys. 58, 5745 (1973).Google Scholar
  16. 16.
    M. Pélissier, N. Komiha, J.P. Daudey, J. Comput. Chem. 9, 298 (1988).Google Scholar
  17. 17.
    A.D. McLean, G.S. Chandler, J. Chem. Phys. 72, 5639 (1980).Google Scholar
  18. 18.
    M.C. Bacchus-Montabonel, Phys. Rev. A 46, 217 (1992).Google Scholar
  19. 19.
    M.C. Bacchus-Montabonel and F. Fraija, Phys. Rev. A 49, 5108 (1994).Google Scholar
  20. 20.
    D.E. Woon, T.H. Dunning Jr. J. Chem. Phys. 98, 1358 (1993).Google Scholar
  21. 21.
    H.J. Werner, P.J. Knowles, MOLPRO (version 2009.1) package of ab-initio programs.Google Scholar
  22. 22.
    A. Nicklass, M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 102, 8942 (1995).CrossRefGoogle Scholar
  23. 23.
    M.C. Bacchus-Montabonel, N. Vaeck, M. Desouter-Lecomte, Chem. Phys. Lett. 374, 307 (2003).CrossRefGoogle Scholar
  24. 24.
    M.C. Bacchus-Montabonel, Y.S. Tergiman, Phys. Rev. A 74, 054702 (2006).CrossRefGoogle Scholar
  25. 25.
    M.C. Bacchus-Montabonel, C. Courbin, R. McCarroll, J. Phys. B 24, 4409 (1991).CrossRefGoogle Scholar
  26. 26.
    F. Fraija, A.R. Allouche, M.C. Bacchus-Montabonel, Phys. Rev. A 49, 272 (1994).CrossRefGoogle Scholar
  27. 27.
    L.F. Errea, L. Mendez, A. Riera, J. Phys. B.. 15, 101 (1982).Google Scholar
  28. 28.
    R.J. Allan, C. Courbin, P. Salas, P. Wahnon, J. Phys. B 23, L461 (1990).Google Scholar
  29. 29.
    M. Gargaud, R. McCarroll, P. Valiron, J. Phys. B 20, 1555 (1987).Google Scholar
  30. 30.
    N.J. Clarke, P.C. Stancil, B. Zygelman, D.L. Cooper, J. Phys. B 31, 533 (1998).Google Scholar
  31. 31.
    M. Gargaud, R. McCarroll, P. Valiron, Astron. Astrophys. 106, 197 (1982).Google Scholar
  32. 32.
    D.R. Bates, B.L. Moiseiwitsch, Proc. Phys. Soc. A 67, 805 (1954).Google Scholar
  33. 33.
    Z. Fang, V.H.S. Kwong, Astrophys. J. 483, 527 (1997).Google Scholar
  34. 34.
    S.E. Butler, A. Dalgarno, Astrophys. J. 241, 838 (1980).Google Scholar
  35. 35.
    P.C. Stancil, N.J. Clarke, B. Zygelman, D.L. Cooper, J. Phys. B 32, 1523 (1999).Google Scholar
  36. 36.
    The UMIST database for Astrochemistry. http://www.udfa.net
  37. 37.
    NIST Atomic Spectra Database Levels. http://www.nist.gov/pml/data/asd.cfm
  38. 38.
    M. Larsson, Chem. Phys. Lett. 117, 331 (1985).Google Scholar
  39. 39.
    N. Honjou, Chem. Phys. 344, 128 (2008).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. C. Bacchus-Montabonel
    • 1
  • D. Talbi
    • 2
  1. 1.Laboratoire de Spectrométrie Ionique et MoléculaireUniversité de Lyon I, CNRS UMR5579Villeurbanne CedexFrance
  2. 2.Laboratoire Univers et Particules de Montpellier UMR 5299 de Montpellier II et CNRSMontpellier cedex 05France

Personalised recommendations