Skip to main content

Analysis of the Charge Transfer Mechanism in Ion-Molecule Collisions

  • Chapter
  • First Online:
Advances in the Theory of Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 22))

Abstract

The collision of C2+ ions on a series of molecular targets, OH, CO and HF is investigated in relation with indirect processes in the action of radiations with the biological medium. The charge transfer cross sections are determined with regard to the orientation of the projectile towards the molecular target, and consideration of the vibration of the diatomics during the collision process. Correlations may be pointed out between the non-adiabatic interactions and the charge transfer cross sections and general rules for the corresponding mechanism are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sobocinski P, Rangama J, Laurent G, Adoui L, Cassimi A, Chesnel J-Y, Dubois A, Hennecart D, Husson X, Frémont F (2002) J Phys B 35:1353

    CAS  Google Scholar 

  2. Laurent G, Fernandez J, Legendre S, Tarisien M, Adoui L, Cassimi A, Flechard X, Frémont F, Gervais B, Giglio E, Grandin JP, Martin F (2006) Phys Rev Lett 96:173201

    Article  CAS  Google Scholar 

  3. Frémont F, Martina D, Kamalou O, Sobocinski P, Chesnel J-Y, McNab IR, Bennett FR (2005) Phys Rev A 71:042706

    Article  Google Scholar 

  4. Bacchus-Montabonel MC (1999) Phys Rev A 59:3569

    Article  CAS  Google Scholar 

  5. Bene E, Vibók Á, Halász GJ, Bacchus-Montabonel MC (2008) Chem Phys Lett 455:159

    Article  CAS  Google Scholar 

  6. Bene E, Martínez P, Halász GJ, Vibók Á, Bacchus-Montabonel MC (2009) Phys Rev A 80:012711

    Article  Google Scholar 

  7. Rozsályi E, Bene E, Halász GJ, Vibók Á, Bacchus-Montabonel MC (2010) Phys Rev A 81:062711

    Article  Google Scholar 

  8. Cabrera-Trujillo R, Deumens E, Ohrn Y, Quinet O, Sabin JR, Stolterfoht N (2007) Phys Rev A 75:052702

    Article  Google Scholar 

  9. Alvarado F, Bari S, Hoekstra R, Schlatölter T (2007) J Chem Phys 127:034301

    Article  Google Scholar 

  10. de Vries J, Hoekstra R, Morgenstern R, Schlathölter T (2003) Phys Rev Lett 91:053401

    Article  Google Scholar 

  11. Bacchus-Montabonel MC, Łabuda M, Tergiman YS, Sienkiewicz JE (2005) Phys Rev A 72:052706

    Article  Google Scholar 

  12. Bacchus-Montabonel MC, Tergiman YS (2006) Phys Rev A 74:054702

    Article  Google Scholar 

  13. Bacchus-Montabonel MC, Tergiman YS, Talbi D (2009) PhysRev A 79:012710

    Google Scholar 

  14. Michael BD, O’Neill PD (2000) Science 287:1603

    Article  CAS  Google Scholar 

  15. Spotheim-Maurizot M, Bergusova M, Charlier M (2003) Actual Chim 1112:97

    Google Scholar 

  16. Bacchus-Montabonel MC, Vaeck N, Lasorne B, Desouter-Lecomte M (2003) Chem Phys Lett 374:307

    Article  CAS  Google Scholar 

  17. Werner HJ, Knowles P MOLPRO (version 2009.1) package of ab-initio programs

    Google Scholar 

  18. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  19. Vaeck N, Bacchus-Montabonel MC, Baloïtcha E, Desouter-Lecomte M (2001) Phys Rev A 63:042704

    Article  Google Scholar 

  20. Bacchus-Montabonel MC, Courbin C, McCarroll R (1991) J Phys B 24:4409

    Article  CAS  Google Scholar 

  21. Honvault P, Gargaud M, Bacchus-Montabonel MC, McCarroll R (1995) Astron Astrophys 302:931

    CAS  Google Scholar 

  22. Chenel A, Mangaud E, Justum Y, Talbi D, Bacchus-Montabonel MC, Desouter-Lecomte M (2010) J Phys B 43:245701

    Article  Google Scholar 

  23. Allan RJ, Courbin C, Salas P, Wahnon P (1990) J Phys B 23:L461

    Article  CAS  Google Scholar 

  24. Stancil PC, Zygelman B, Kirby K (1998) In: Aumayr F, Winter HP (eds) Photonic, electronic, and atomic collisions. World Scientific, Singapore, p 537

    Google Scholar 

  25. Bates DR, McCarroll R (1958) Proc R Soc A 245:175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was granted access to the HPC resources of [CCRT/CINES/IDRIS under the allocation 2010- [i2010081566] made by GENCI [Grand Equipement National de Calcul Intensif]. The support of the COST Action CM0702 CUSPFEL is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rozsályi, E., Bene, E., Halász, G.J., Vibók, Á., Bacchus-Montabonel, M.C. (2012). Analysis of the Charge Transfer Mechanism in Ion-Molecule Collisions. In: Hoggan, P., Brändas, E., Maruani, J., Piecuch, P., Delgado-Barrio, G. (eds) Advances in the Theory of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2076-3_20

Download citation

Publish with us

Policies and ethics