Advertisement

Quantum Monte Carlo Calculations of Electronic Excitation Energies: The Case of the Singlet n→π (CO) Transition in Acrolein

  • Julien Toulouse
  • Michel Caffarel
  • Peter Reinhardt
  • Philip E. Hoggan
  • C. J. Umrigar
Chapter
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 22)

Abstract

We report state-of-the-art quantum Monte Carlo calculations of the singlet n→π (CO) vertical excitation energy in the acrolein molecule, extending the recent study of Bouabça et al. (J Chem Phys 130:114107, 2009). We investigate the effect of using a Slater basis set instead of a Gaussian basis set, and of using state-average versus state-specific complete-active-space (CAS) wave functions, with or without reoptimization of the coefficients of the configuration state functions (CSFs) and of the orbitals in variational Monte Carlo (VMC). It is found that, with the Slater basis set used here, both state-average and state-specific CAS(6,5) wave functions give an accurate excitation energy in diffusion Monte Carlo (DMC), with or without reoptimization of the CSF and orbital coefficients in the presence of the Jastrow factor. In contrast, the CAS(2,2) wave functions require reoptimization of the CSF and orbital coefficients to give a good DMC excitation energy. Our best estimates of the vertical excitation energy are between 3.86 and 3.89 eV.

Keywords

Quantum Monte Carlo Slater Basis Trial Wave Function Vertical Excitation Energy Diffusion Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Most QMC calculations have been done on the IBM Blue Gene of Forschungszentrum Jülich (Germany) within the DEISA project STOP-Qalm. CJU acknowledges support from NSF grant number CHE-1004603.

References

  1. 1.
    Hammond BL, Lester JWA, Reynolds PJ (1994) Monte Carlo methods in ab initio quantum chemistry. World Scientific, SingaporeGoogle Scholar
  2. 2.
    Nightingale MP, Umrigar CJ (eds) (1999) Quantum Monte Carlo methods in physics and chemistry. NATO ASI ser. C 525. Kluwer, DordrechtGoogle Scholar
  3. 3.
    Foulkes WMC, Mitas L, Needs RJ, Rajagopal G (2001) Rev Mod Phys 73:33CrossRefGoogle Scholar
  4. 4.
    Grossman JC, Rohlfing M, Mitas L, Louie SG, Cohen ML (2001) Phys Rev Lett 86:472CrossRefGoogle Scholar
  5. 5.
    Aspuru-Guzik A, Akramine OE, Grossman JC, Lester WA (2004) J Chem Phys 120:3049CrossRefGoogle Scholar
  6. 6.
    Schautz F, Filippi C (2004) J Chem Phys 120:10931CrossRefGoogle Scholar
  7. 7.
    Schautz F, Buda F, Filippi C (2004) J Chem Phys 121:5836CrossRefGoogle Scholar
  8. 8.
    Drummond ND, Williamson AJ, Needs RJ, Galli G (2005) Phys Rev Lett 95:096801CrossRefGoogle Scholar
  9. 9.
    Scemama A, Filippi C (2006) Phys Rev B 73:241101CrossRefGoogle Scholar
  10. 10.
    Cordova F, Doriol LJ, Ipatov A, Casida ME, Filippi C, Vela A (2007) J Chem Phys 127:164111CrossRefGoogle Scholar
  11. 11.
    Tiago ML, Kent PRC, Hood RQ, Reboredo FA (2008) J Chem Phys 129:084311CrossRefGoogle Scholar
  12. 12.
    Tapavicza E, Tavernelli I, Rothlisberger U, Filippi C, Casida ME (2008) J Chem Phys 129:124108CrossRefGoogle Scholar
  13. 13.
    Bouabça T, Ben Amor N, Maynau D, Caffarel M (2009) J Chem Phys 130:114107Google Scholar
  14. 14.
    Filippi C, Zaccheddu M, Buda F (2009) J Chem Theory Comput 5:2074CrossRefGoogle Scholar
  15. 15.
    Zimmerman PM, Toulouse J, Zhang Z, Musgrave CB, Umrigar CJ (2009) J Chem Phys 131:124103CrossRefGoogle Scholar
  16. 16.
    Manten S, Lüchow A (2001) J Chem Phys 115:5362CrossRefGoogle Scholar
  17. 17.
    Blom CE, Grassi G, Bauder A (1984) J Am Chem Soc 106:7427CrossRefGoogle Scholar
  18. 18.
    Toulouse J, Umrigar CJ (2007) J Chem Phys 126:084102CrossRefGoogle Scholar
  19. 19.
    Toulouse J, Umrigar CJ (2008) J Chem Phys 128:174101CrossRefGoogle Scholar
  20. 20.
    Umrigar CJ. UnpublishedGoogle Scholar
  21. 21.
    Filippi C, Umrigar CJ (1996) J Chem Phys 105:213CrossRefGoogle Scholar
  22. 22.
    Güçlü AD, Jeon GS, Umrigar CJ, Jain JK (2005) Phys Rev B 72:205327CrossRefGoogle Scholar
  23. 23.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  24. 24.
    Ema I, García de la Vega JM, Ramírez G, López R, Fernández Rico J, Meissner H, Paldus J (2003) J Comput Chem 24:859Google Scholar
  25. 25.
    Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657CrossRefGoogle Scholar
  26. 26.
    Stewart RF (1970) J Chem Phys 52:431CrossRefGoogle Scholar
  27. 27.
    Kollias A, Reinhardt P, Assaraf R. UnpublishedGoogle Scholar
  28. 28.
    Umrigar CJ, Filippi C, Toulouse J. CHAMP, a quantum Monte Carlo program http://pages.physics.cornell.edu/~cyrus/champ.html. Accessed 8 Aug 2011
  29. 29.
    Umrigar CJ, Toulouse J, Filippi C, Sorella S, Hennig RG (2007) Phys Rev Lett 98:110201CrossRefGoogle Scholar
  30. 30.
    Umrigar CJ (1993) Phys Rev Lett 71:408CrossRefGoogle Scholar
  31. 31.
    Umrigar CJ (1999) In: Nightingale MP, Umrigar CJ (eds) Quantum Monte Carlo methods in physics and chemistry. NATO ASI Ser. C 525. Kluwer, Dordrecht, p 129CrossRefGoogle Scholar
  32. 32.
    Grimm R, Storer RG (1971) J Comput Phys 7:134CrossRefGoogle Scholar
  33. 33.
    Anderson JB (1975) J Chem Phys 63:1499CrossRefGoogle Scholar
  34. 34.
    Anderson JB (1976) J Chem Phys 65:4121CrossRefGoogle Scholar
  35. 35.
    Reynolds PJ, Ceperley DM, Alder BJ, Lester WA (1982) J Chem Phys 77:5593CrossRefGoogle Scholar
  36. 36.
    Moskowitz JW, Schmidt KE, Lee MA, Kalos MH (1982) J Chem Phys 77:349CrossRefGoogle Scholar
  37. 37.
    Umrigar CJ, Nightingale MP, Runge KJ (1993) J Chem Phys 99:2865CrossRefGoogle Scholar
  38. 38.
    Aquilante F, Barone V, Roos BO (2003) J Chem Phys 119:12323CrossRefGoogle Scholar
  39. 39.
    Aidas K, Møgelhøj A, Nilsson EJK, Johnson MS, Mikkelsen KV, Christiansen O, Söderhjelm P, Kongsted J (2008) J Chem Phys 128:194503CrossRefGoogle Scholar
  40. 40.
    Martín ME, Losa AM, Fdez.-Galván I, Aguilar MA (2004) J Chem Phys 121:3710Google Scholar
  41. 41.
    Losa AM, Fdez.-Galván I, Aguilar MA, Martín ME (2007) J Phys Chem B 111:9864Google Scholar
  42. 42.
    do Monte SA, Müller T, Dallos M, Lischka H, Diedenhofen M, Klamt A (2004) Theor Chem Acc 111:78Google Scholar
  43. 43.
    Saha B, Ehara M, Nakatsuji H (2006) J Chem Phys 125:014316CrossRefGoogle Scholar
  44. 44.
    Blacet FE, Young WG, Roof JG (1937) J Am Chem Soc 59:608CrossRefGoogle Scholar
  45. 45.
    Inuzuka K (1960) Bull Chem Soc Jpn 33:678CrossRefGoogle Scholar
  46. 46.
    Hollas JM (1963) Spectrochim Acta 19:1425CrossRefGoogle Scholar
  47. 47.
    Moskvin AF, Yablonskii OP, Bondar LF (1966) Theor Exp Chem 2:636Google Scholar
  48. 48.
    Galek PTA, Handy NC, Cohen AJ, Chan GKL (2005) Chem Phys Lett 404:156CrossRefGoogle Scholar
  49. 49.
    Galek PTA, Handy NC, Lester WA Jr (2006) Mol Phys 104:3069CrossRefGoogle Scholar
  50. 50.
    Nemec N, Towler MD, Needs RJ (2010) J Chem Phys 132:034111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Julien Toulouse
    • 1
  • Michel Caffarel
    • 2
  • Peter Reinhardt
    • 1
  • Philip E. Hoggan
    • 3
  • C. J. Umrigar
    • 4
  1. 1.Laboratoire de Chimie ThéoriqueUniversité Pierre et Marie Curie and CNRSParisFrance
  2. 2.Laboratoire de Chimie et Physique Quantiques, IRSAMCCNRS and Université de ToulouseToulouseFrance
  3. 3.LASMEACNRS and Université Blaise PascalAubièreFrance
  4. 4.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaUSA

Personalised recommendations