Skip to main content

Short-Time Dynamics Through Conical Intersections in Macrosystems: Quadratic Coupling Extension

  • Chapter
  • First Online:
Advances in the Theory of Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 22))

  • 1401 Accesses

Abstract

We present an approach based on the quadratic vibronic coupling (QVC) Hamiltonian [New J Chem 17:7–29,1993] and the effective-mode formalism [Phys Rev Lett 94:113003, 2005] for the short-time dynamics through conical intersections in complex molecular systems. Within this scheme the nuclear degrees of freedom of the whole system are split as system modes and as environment modes. To describe the short-time dynamics in the macrosystem precisely, only three effective environmental modes together with the system’s modes are needed. Based on this decomposition, in the cumulant expansion of the autocorrelation function, the exact cumulants are recovered up to the second order. To demonstrate the capability of our method and for comparison with other results, the pyrazine molecule is chosen as a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: electronic structure, dynamics and spectroscopy. World Scientific, Singapore

    Google Scholar 

  2. Yarkony DR (1996) Rev Mod Phys 68:985

    Article  CAS  Google Scholar 

  3. Baer M (2006) Beyond Born Oppenheimer: electronic non-adiabatic coupling terms and conical intersections. Wiley, Hoboken

    Book  Google Scholar 

  4. Worth GA, Cederbaum LS (2004) Annu Rev Phys Chem 55:127

    Article  CAS  Google Scholar 

  5. Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. VCH Publishers Inc, New York

    Google Scholar 

  6. Andruniow T, Ferre N, Olivucci M (2004) Proc Natl Acad Sci 101:17908

    Article  CAS  Google Scholar 

  7. Herzberg G, Longuet-Higgins HC (1963) Discuss Faraday Soc 35:77

    Article  Google Scholar 

  8. Longuet-Higgins HC (1975) Proc R Soc London Ser A 344:147

    Article  CAS  Google Scholar 

  9. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59

    Article  Google Scholar 

  10. Baer M, Billing GD (2002) The role of degenerate states in chemistry. In: Advances in chemical physics, vol 124. Wiley-Interscience, New York

    Google Scholar 

  11. Matsika S (2007) Rev Comp Chem 23:83

    Article  CAS  Google Scholar 

  12. Desouter-Lecomte M, Dehareng D, Leyh-Nihant B, Praet AJ, Lorquet MT, Lorquet JC (1985) J Chem Phys 89:214

    Article  CAS  Google Scholar 

  13. Köppel H (1983) Chem Phys 77:359375

    Article  Google Scholar 

  14. Kuppermann A (1996) In: Wyatt RE, Zhang JZ (eds) Dynamics of molecules and chemical reactions. Marcel Dekker, New York

    Google Scholar 

  15. Lepetit B, Kuppermann A (1990) Chem Phys Lett 166:581

    Article  CAS  Google Scholar 

  16. Kuppermann A, Abrol R (2002) Adv Chem Phys 124:323

    Article  Google Scholar 

  17. Schinke R (1993) Photodissociation dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Meyer HD, Manthe U, Cederbaum LS (1990) Chem Phys Lett 165:73

    Article  CAS  Google Scholar 

  19. Beck MH, Jäckle A, Worth GA, Meyer H-D (2000) Phys Rep 324:1; Worth GA, et al (2000) The MCTD package, version 8.2; Meyer H-D 2002 The MCTH package, version 8.3 see http://www.pci.uni-heidelberg.de/cms/mctdh/

  20. Meyer H-D, Gatti F, Worth GA (eds) (2009) Multidimensional quantum dynamics: MCTDH theory and applications. Wiley-VCH, Weinheim

    Google Scholar 

  21. Cederbaum LS, Gindensperger E, Burghardt I (2005) Phys Rev Lett 94:113003-0

    Article  Google Scholar 

  22. Gindensperger E, Burghardt I, Cederbaum LS (2006) J Chem Phys 124:144103

    Article  Google Scholar 

  23. Gindensperger E, Burghardt I, Cederbaum LS (2006) J Chem Phys 124:144104

    Article  Google Scholar 

  24. Gindensperger E, Köppel H, Cederbaum LS (2007) J Chem Phys 126:034106

    Article  Google Scholar 

  25. Gindensperger E, Cederbaum LS (2007) J Chem Phys 127:124107

    Article  Google Scholar 

  26. Basler M, Gindensperger E, Meyer HD, Cederbaum LS (2008) Chem Phys 347:78

    Article  CAS  Google Scholar 

  27. Tamura H, Bittner ER, Burghardt I (2007) J Chem Phys 126:021103

    Article  Google Scholar 

  28. Tamura H, Bittner ER, Burghardt I (2007) J Chem Phys 127:021103

    Article  Google Scholar 

  29. Hughes KH, Christ CD, Burghardt I (2009) J Chem Phys 131:124108

    Article  Google Scholar 

  30. Hughes KH, Christ CD, Burghardt I (2009) J Chem Phys 131:024109

    Article  Google Scholar 

  31. Burghardt I, Hughes KH, Tamura H, Gindensperger E, Koeppel H, Cederbaum LS (2011) Conical intersections coupled to an environment. In: Domcke W, Yarkony DR, Koeppel H (eds) Conical intersections: theory, computation, and experiment. World Scientific, New Jersey (in press)

    Google Scholar 

  32. Raab A, Worth GA, Meyer H-D, Cederbaum LS (1999) J Chem Phys 110:936

    Article  CAS  Google Scholar 

  33. Worth GA, Meyer HD, Cederbaum LS (1996) J Chem Phys 105:4412

    Article  CAS  Google Scholar 

  34. Worth GA, Meyer HD, Cederbaum LS (1998) J Chem Phys 109:3518

    Article  CAS  Google Scholar 

  35. Mahapatra S, Worth GA, Meyer H-D, Cederbaum LS, Köppel H (2001) J Phys Chem A 105:5567

    Article  CAS  Google Scholar 

  36. Levine RD (1969) Quantum mechanics of molecular rate processes. Oxford University Press, New York

    Google Scholar 

  37. Cramér H (1946) Mathematical methods of statistics. Princeton University Press, Princeton

    Google Scholar 

  38. Halász GJ, Csehi A, Gindensperger E, Köppel H, Vibók Á submitted to J Phys Chem A

    Google Scholar 

Download references

Acknowledgements

Á.V. acknowledges the OTKA Grant No. 80095. The financial support by the COST Action CM0702 CUSPFEL, the Deutsche Forschungsgemeinschaft (H.K.), and Egide/DAAD Procope (20139VE) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Halász, G.J., Papp, A., Gindensperger, E., Köppel, H., Vibók, Á. (2012). Short-Time Dynamics Through Conical Intersections in Macrosystems: Quadratic Coupling Extension. In: Hoggan, P., Brändas, E., Maruani, J., Piecuch, P., Delgado-Barrio, G. (eds) Advances in the Theory of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2076-3_16

Download citation

Publish with us

Policies and ethics