Hierarchical Effective-Mode Approach for Extended Molecular Systems

  • Rocco Martinazzo
  • Keith H. Hughes
  • Irene Burghardt
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 22)


Photoinduced processes in extended molecular systems are often ultrafast and involve strong electron-vibration (vibronic) coupling effects which necessitate a non-perturbative treatment. In the approach presented here, high-dimensional vibrational subspaces are expressed in terms of effective modes, and hierarchical chains of such modes which sequentially resolve the dynamics as a function of time. This permits introducing systematic reduction procedures, both for discretized vibrational distributions and for continuous distributions characterized by spectral densities. In the latter case, a sequence of spectral densities is obtained from a Mori/Rubin-type continued fraction representation. The approach is suitable to describe nonadiabatic processes at conical intersections, excitation energy transfer in molecular aggregates, and related transport phenomena that can be described by generalized spin-boson models.


Spectral Density Effective Mode Conical Intersection Photoinduced Process Subsystem Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Various contributions to the effective-mode developments described here, notably by Lorenz Cederbaum, Etienne Gindensperger, Eric Bittner, and Hiroyuki Tamura, are gratefully acknowledged.


  1. 1.
    Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59CrossRefGoogle Scholar
  2. 2.
    Köppel H, Domcke W, Cederbaum LS (2004) In: Domcke W, Yarkony DR, Köppel H (eds) Conical intersections, vol 15. World Scientific, New Jersey, p 323Google Scholar
  3. 3.
    Yarkony DR (1996) Rev Mod Phys 68:985CrossRefGoogle Scholar
  4. 4.
    Yarkony DR (1998) Acc Chem Res 31:511CrossRefGoogle Scholar
  5. 5.
    Lee H, Cheng Y-C, Fleming GR (2007) Science 316:1462CrossRefGoogle Scholar
  6. 6.
    Collini E, Scholes GD (2009) Science 323:369CrossRefGoogle Scholar
  7. 7.
    Förster T (1948) Ann Phys 2:55CrossRefGoogle Scholar
  8. 8.
    May V, Kühn O (2003) Charge and energy transfer dynamics in molecular systems. VCH-Wiley, WeinheimCrossRefGoogle Scholar
  9. 9.
    Prezhdo OV, Rossky PJ (1998) Phys Rev Lett 81:5294CrossRefGoogle Scholar
  10. 10.
    Brédas J-L, Silbey RJ (2009) Science 323:348CrossRefGoogle Scholar
  11. 11.
    Chen X, Silbey RJ (2010) J Chem Phys 132:204503CrossRefGoogle Scholar
  12. 12.
    Weiss U (1999) Quantum dissipative systems. World Scientific, SingaporeCrossRefGoogle Scholar
  13. 13.
    van Kampen NG (1992) Stochastic processes in physics and chemistry. North-Holland, AmsterdamGoogle Scholar
  14. 14.
    Kühl A, Domcke W (2002) J Chem Phys 116:263CrossRefGoogle Scholar
  15. 15.
    Gelman D, Katz G, Kosloff R, Ratner MA (2005) J Chem Phys 123:134112CrossRefGoogle Scholar
  16. 16.
    Worth GA, Meyer H-D, Köppel H, Cederbaum LS, Burghardt I (2008) Int Revs Phys Chem 27:569CrossRefGoogle Scholar
  17. 17.
    Burghardt I, Giri K, Worth GA (2008) J Chem Phys 129:174104CrossRefGoogle Scholar
  18. 18.
    Leggett AJ, et al (1987) Rev Mod Phys 59:1CrossRefGoogle Scholar
  19. 19.
    Virshup AM, et al (2009) J Phys Chem B 113:3280CrossRefGoogle Scholar
  20. 20.
    Boggio-Pasqua M, Robb MA, Groenhof G (2009) J Am Chem Soc 131:13580CrossRefGoogle Scholar
  21. 21.
    Sinicropi A, et al (2007) Proc Natl Acad Sci U S A 105:17642CrossRefGoogle Scholar
  22. 22.
    Toniolo A, Olsen S, Manohar L, Martínez TJ (2004) Faraday Discuss Chem Soc 127:149Google Scholar
  23. 23.
    Levine BG, Martínez TJ (2007) Annu Rev Phys Chem 58:613CrossRefGoogle Scholar
  24. 24.
    Worth GA, Robb MA, Burghardt I (2004) Faraday Discuss 127:307CrossRefGoogle Scholar
  25. 25.
    Cederbaum LS, Gindensperger E, Burghardt I (2005) Phys Rev Lett 94:113003CrossRefGoogle Scholar
  26. 26.
    Gindensperger E, Burghardt I, Cederbaum LS (2006) J Chem Phys 124:144103CrossRefGoogle Scholar
  27. 27.
    Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New York/OxfordGoogle Scholar
  28. 28.
    Garg A, Onuchic JN, Ambegaokar V (1985) J Chem Phys 83:4491CrossRefGoogle Scholar
  29. 29.
    Mori H (1965) Prog Theor Phys 34:399CrossRefGoogle Scholar
  30. 30.
    Dupuis M (1967) Prog Theor Phys 37:502CrossRefGoogle Scholar
  31. 31.
    Grigolini P, Parravicini GP (1982) Phys Rev B 25:5180CrossRefGoogle Scholar
  32. 32.
    Hughes KH, Christ CD, Burghardt I (2009) J Chem Phys 131:024109CrossRefGoogle Scholar
  33. 33.
    Hughes KH, Christ CD, Burghardt I (2009) J Chem Phys 131:124108CrossRefGoogle Scholar
  34. 34.
    Martinazzo R, Vacchini B, Hughes KH, Burghardt I (2011) J Chem Phys 134:011101CrossRefGoogle Scholar
  35. 35.
    Tanimura Y, Kubo R (1989) J Phys Soc Jpn 58:101CrossRefGoogle Scholar
  36. 36.
    Ishizaki A, Tanimura Y (2005) J Phys Soc Jpn 74:3131CrossRefGoogle Scholar
  37. 37.
    Shi Q, Chen L, Nan G, Xu R-X, Yan Y (2009) J Chem Phys 130:164518CrossRefGoogle Scholar
  38. 38.
    Tamura H, Bittner ER, Burghardt I (2007) J Chem Phys 127:034706CrossRefGoogle Scholar
  39. 39.
    Martinazzo R, Hughes KH, Martelli F, Burghardt I (2010) Chem Phys 377:21CrossRefGoogle Scholar
  40. 40.
    Tamura H, Bittner ER, Burghardt I (2007) J Chem Phys 126:021103CrossRefGoogle Scholar
  41. 41.
    Tamura H, Ramon J, Bittner ER, Burghardt I (2008) J Phys Chem B 112:495CrossRefGoogle Scholar
  42. 42.
    Gindensperger E, Köppel H, Cederbaum LS (2007) J Chem Phys 126:034106CrossRefGoogle Scholar
  43. 43.
    Gindensperger E, Cederbaum LS (2007) J Chem Phys 127:124107CrossRefGoogle Scholar
  44. 44.
    Burghardt I, Gindensperger E, Cederbaum LS (2006) Mol Phys 104:1081CrossRefGoogle Scholar
  45. 45.
    Gindensperger E, Burghardt I, Cederbaum LS (2006) J Chem Phys 124:144104CrossRefGoogle Scholar
  46. 46.
    Rubin RJ (1963) Phys Rev 131:964CrossRefGoogle Scholar
  47. 47.
    Sterpone F, Martinazzo R, Burghardt I (2011) Coherent excitation transfer driven by torsional dynamics: a model Hamiltonian for PPV type systems. J Chem Phys (to be submitted)Google Scholar
  48. 48.
    Sterpone F, Rossky PJ (2008) J Phys Chem B 112:4983CrossRefGoogle Scholar
  49. 49.
    Raab A, Worth GA, Meyer H-D, Cederbaum LS (1999) J Chem Phys 110:936CrossRefGoogle Scholar
  50. 50.
    Krempl S, Winterstetter M, Plöhn H, Domcke W (1994) J Chem Phys 100:926CrossRefGoogle Scholar
  51. 51.
    Meyer H-D, Manthe U, Cederbaum LS (1990) Chem Phys Lett 165:73CrossRefGoogle Scholar
  52. 52.
    Manthe U, Meyer H-D, Cederbaum LS (1992) J Chem Phys 97:3199CrossRefGoogle Scholar
  53. 53.
    Beck MH, Jäckle A, Worth GA, Meyer HD (2000) Phys Rep 324:1CrossRefGoogle Scholar
  54. 54.
    Groenhof G, et al (2004) J Am Chem Soc 126:4228CrossRefGoogle Scholar
  55. 55.
    Tamura H, Ramon J, Bittner ER, Burghardt I (2008) Phys Rev Lett 100:107402CrossRefGoogle Scholar
  56. 56.
    Pereverzev A, Burghardt I, Bittner ER (2009) J Chem Phys 131:034104CrossRefGoogle Scholar
  57. 57.
    Halperin B, Englman R (1974) Phys Rev B 9:2264CrossRefGoogle Scholar
  58. 58.
    Warshel A, Weiss RM (1980) J Am Chem Soc 102:6218CrossRefGoogle Scholar
  59. 59.
    Benjamin I, Barbara P, Gertner B, Hynes JT (1995) J Phys Chem 99:7557CrossRefGoogle Scholar
  60. 60.
    Burghardt I, Hynes JT (2006) J Phys Chem A 110:11411CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Rocco Martinazzo
    • 1
  • Keith H. Hughes
    • 2
  • Irene Burghardt
    • 3
    • 4
  1. 1.Department of Physical Chemistry and ElectrochemistryUniversity of MilanMilanItaly
  2. 2.School of ChemistryBangor UniversityBangorUK
  3. 3.Département de ChimieEcole Normale SupérieureParisFrance
  4. 4.Institute of Physical and Theoretical ChemistryGoethe University FrankfurtFrankfurtGermany

Personalised recommendations