Advertisement

Shifts in Excitation Energies Induced by Hydrogen Bonding: A Comparison of the Embedding and Supermolecular Time-Dependent Density Functional Theory Calculations with the Equation-of-Motion Coupled-Cluster Results

  • Georgios Fradelos
  • Jesse J. Lutz
  • Tomasz A. Wesołowski
  • Piotr Piecuch
  • Marta Włoch
Chapter
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 22)

Abstract

Shifts in the π → π excitation energy of the cis-7-hydroxyquinoline chromophore induced by hydrogen bonding with small molecules, obtained with the frozen-density embedding theory (FDET), are compared with the results of the high-level equation-of-motion coupled-cluster (EOMCC) calculations with singles, doubles, and noniterative triples, which provide the reference ab initio data, the supermolecular time-dependent density functional theory (TDDFT) calculations, and the available experimental data. It is demonstrated that the spectral shifts resulting from the FDET calculations employing nonrelaxed environment densities and their EOMCC counterparts are in excellent agreement with one another, whereas the analogous shifts obtained with the supermolecular TDDFT approach do not agree with the EOMCC reference data. Among the discussed issues are the effects of higher-order correlations on the excitation energies and complexation-induced excitation energy shifts resulting from the EOMCC calculations, and the choice of the approximants that represent the nonadditive kinetic energy contributions to the embedding potential of FDET.

Keywords

Excitation Energy Spectral Shift Full Configuration Interaction Vertical Excitation Energy Unsigned Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by the U.S. Department of Energy (Grant No. DE-FG02-01ER15228; P.P.) and Fonds National Suisse de la Recherche Scientifique (Grant No. 200020-134791; T.A.W.).

References

  1. 1.
    Tanner C, Manca C, Leutwyler S (2003) Science 302:1736CrossRefGoogle Scholar
  2. 2.
    Bruhwiler D, Calzaferri G, Torres T, Ramm JH, Gartmann N, Dieu LQ, Lopez-Duarte I, Martinez-Diaz MV (2009) J Mater Chem 19:8040CrossRefGoogle Scholar
  3. 3.
    Hernandez FE, Yu S, Garcia M, Campiglia AD (2005) J Phys Chem B 109:9499CrossRefGoogle Scholar
  4. 4.
    Goldberg JM, Batjargal S, Petersson EJ (2010) J Am Chem Soc 132:14719CrossRefGoogle Scholar
  5. 5.
    Thut M, Tanner C, Steinlin A, Leutwyler S (2008) J Phys Chem A 112:5566CrossRefGoogle Scholar
  6. 6.
    Emrich K (1981) Nucl Phys A 351:379CrossRefGoogle Scholar
  7. 7.
    Geertsen J, Rittby M, Bartlett RJ (1989) Chem Phys Lett 164:57CrossRefGoogle Scholar
  8. 8.
    Comeau DC, Bartlett RJ (1993) Chem Phys Lett 207:414CrossRefGoogle Scholar
  9. 9.
    Stanton JF, Bartlett RJ (1993) J Chem Phys 98:7029CrossRefGoogle Scholar
  10. 10.
    Piecuch P, Bartlett RJ (1999) Adv Quantum Chem 34:295CrossRefGoogle Scholar
  11. 11.
    Monkhorst H (1977) Int J Quantum Chem Symp 11:421Google Scholar
  12. 12.
    Dalgaard E, Monkhorst H (1983) Phys Rev A 28:1217CrossRefGoogle Scholar
  13. 13.
    Mukherjee D, Mukherjee PK (1979) Chem Phys 39:325CrossRefGoogle Scholar
  14. 14.
    Takahashi M, Paldus J (1986) J Chem Phys 85:1486CrossRefGoogle Scholar
  15. 15.
    Koch H, Jørgensen P (1990) J Chem Phys 93:3333CrossRefGoogle Scholar
  16. 16.
    Koch H, Jensen HJA, Jørgensen P, Helgaker T (1990) J Chem Phys 93:3345CrossRefGoogle Scholar
  17. 17.
    Coester F (1958) Nucl Phys 7:421CrossRefGoogle Scholar
  18. 18.
    Coester F, Kümmel H (1960) Nucl Phys 17:477CrossRefGoogle Scholar
  19. 19.
    Čížek J (1966) J Chem Phys 45:4256CrossRefGoogle Scholar
  20. 20.
    Čížek J (1969) Adv Chem Phys 14:35CrossRefGoogle Scholar
  21. 21.
    Čížek J, Paldus J (1971) Int J Quantum Chem 5:359CrossRefGoogle Scholar
  22. 22.
    Paldus J, Shavitt I, Čížek J (1972) Phys Rev A 5:50CrossRefGoogle Scholar
  23. 23.
    Gauss J (1998) In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, pp 615–636Google Scholar
  24. 24.
    Paldus J, Li X (1999) Adv Chem Phys 110:1CrossRefGoogle Scholar
  25. 25.
    Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291CrossRefGoogle Scholar
  26. 26.
    Piecuch P, Włoch M (2005) J Chem Phys 123:224105CrossRefGoogle Scholar
  27. 27.
    Piecuch P, Włoch M, Gour JR, Kinal A (2006) Chem Phys Lett 418:467CrossRefGoogle Scholar
  28. 28.
    Włoch M, Gour JR, Piecuch P (2007) J Phys Chem A 111:11359CrossRefGoogle Scholar
  29. 29.
    Włoch M, Lodriguito MD, Piecuch P, Gour JR (2006) Mol Phys 104:2149CrossRefGoogle Scholar
  30. 30.
    Piecuch P, Włoch M, Lodriguito M, Gour JR (2006) In: Wilson S, Julien JP, Maruani J, Brändas E, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 15. Springer, Dordrecht, pp 45–106Google Scholar
  31. 31.
    Piecuch P, Gour JR, Włoch M (2009) Int J Quantum Chem 109:3268CrossRefGoogle Scholar
  32. 32.
    Shiozaki T, Hirao K, Hirata S (2007) J Chem Phys 126:244106CrossRefGoogle Scholar
  33. 33.
    Watts JD, Bartlett RJ (1996) Chem Phys Lett 258:581CrossRefGoogle Scholar
  34. 34.
    Meissner L, Bartlett RJ (1995) J Chem Phys 102:7490CrossRefGoogle Scholar
  35. 35.
    Korona T, Werner HJ (2003) J Chem Phys 118:3006CrossRefGoogle Scholar
  36. 36.
    Korona T, Schütz M (2006) J Chem Phys 125:104106CrossRefGoogle Scholar
  37. 37.
    Kats D, Korona T, Schütz M (2007) J Chem Phys 127:064107CrossRefGoogle Scholar
  38. 38.
    Crawford TD, King RA (2002) Chem Phys Lett 366:611CrossRefGoogle Scholar
  39. 39.
    Fan PD, Valiev M, Kowalski K (2008) Chem Phys Lett 458:205CrossRefGoogle Scholar
  40. 40.
    Valiev M, Kowalski K (2006) J Chem Phys 125:211101CrossRefGoogle Scholar
  41. 41.
    Valiev M, Kowalski K (2006) J Phys Chem A 110:13106CrossRefGoogle Scholar
  42. 42.
    Kowalski K, Valiev M (2008) J Phys Chem A 112:5538CrossRefGoogle Scholar
  43. 43.
    Epifanovsky E, Kowalski K, Fan PD, Valiev M, Matsika S, Krylov AI (2008) J Phys Chem A 112:9983CrossRefGoogle Scholar
  44. 44.
    Casida ME (1995) In: Chong DP (ed) Recent advances in density-functional methods, part-i. World Scientific, Singapore, pp 155–192CrossRefGoogle Scholar
  45. 45.
    Wesolowski TA, Warshel A (1993) J Phys Chem 97:8050CrossRefGoogle Scholar
  46. 46.
    Wesołowski TA (2006) In: Leszczyński J (ed) Computational chemistry: reviews of current trends, vol 10. World Scientific, Singapore, pp 1–82CrossRefGoogle Scholar
  47. 47.
    Wesolowski TA (2008) Phys Rev A 77:012504CrossRefGoogle Scholar
  48. 48.
    Pernal K, Wesolowski TA (2009) Int J Quantum Chem 109:2520CrossRefGoogle Scholar
  49. 49.
    Wesolowski TA, Warshel A (1994) J Phys Chem 98:5183CrossRefGoogle Scholar
  50. 50.
    Neugebauer J, Louwerse MJ, Baerends EJ, Wesolowski TA (2005) J Chem Phys 122:094115CrossRefGoogle Scholar
  51. 51.
    Kaminski JW, Gusarov S, Kovalenko A, Wesolowski TA (2010) J Phys Chem A 114:6082CrossRefGoogle Scholar
  52. 52.
    Savin A, Wesolowski TA (2009) In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Progress in theoretical chemistry and physics, vol 19. Springer, Dordrecht, pp 327–339Google Scholar
  53. 53.
    Roncero O, de Lara-Castells M, Villarreal P, Flores F, Ortega J, Paniagua M, Aguado A (2008) J Chem Phys 129:184104CrossRefGoogle Scholar
  54. 54.
    Fux S, Jacob C, Neugebauer J, Visscher L, Reiher M (2010) J Chem Phys 132:164101CrossRefGoogle Scholar
  55. 55.
    Goodpaster JD, Ananth N, Manby FR, Miller TF III (2010) J Chem Phys 133:084103CrossRefGoogle Scholar
  56. 56.
    Wesolowski T (2004) J Am Chem Soc 126:11444CrossRefGoogle Scholar
  57. 57.
    Fradelos G, Kaminski JW, Wesolowski TA, Leutwyler S (2009) J Phys Chem A 19:9766CrossRefGoogle Scholar
  58. 58.
    Wesolowski TA, Chermette H, Weber J (1996) J Chem Phys 105:9182CrossRefGoogle Scholar
  59. 59.
    Lastra JMG, Kaminski JW, Wesolowski TA (2008) J Chem Phys 129:074107CrossRefGoogle Scholar
  60. 60.
    Fradelos G, Lutz JJ, Wesołowski TA, Piecuch P, Włoch M (2011) J Chem Theory Comput 7:1647CrossRefGoogle Scholar
  61. 61.
    Domcke W, Sobolewski AL (2003) Science 302:1963CrossRefGoogle Scholar
  62. 62.
    Stefanovich EV, Truong TN (1996) J Chem Phys 104:2946CrossRefGoogle Scholar
  63. 63.
    Govind N, Wang YA, Carter EA (1999) J Chem Phys 110:7677CrossRefGoogle Scholar
  64. 64.
    Neugebauer J, Jacob CR, Wesolowski TA, Baerends EJ (2005) J Phys Chem A 109:7805CrossRefGoogle Scholar
  65. 65.
    Hodak M, Lu W, Bernholc J (2008) J Chem Phys 128:014101CrossRefGoogle Scholar
  66. 66.
    Gomes ASP, Jacob CR, Visscher L (2008) Phys Chem Chem Phys 10:5353CrossRefGoogle Scholar
  67. 67.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  68. 68.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  69. 69.
    Cortona P (1991) Phys Rev B 44:8454CrossRefGoogle Scholar
  70. 70.
    Senatore G, Subbaswamy K (1986) Phys Rev B 34:5754CrossRefGoogle Scholar
  71. 71.
    Elliott P, Cohen MH, Wasserman A, Burke K (2009) J Chem Theory Comput 5:827CrossRefGoogle Scholar
  72. 72.
    Jacob CJ, Neugebauer J, Jensen L, Visscher L (2006) Phys Chem Chem Phys 8:2349CrossRefGoogle Scholar
  73. 73.
    Wesolowski TA (1999) Chem Phys Lett 311:87CrossRefGoogle Scholar
  74. 74.
    Neugebauer J, Louwerse MJ, Belanzoni P, Wesolowski TA, Baerends EJ (2005) J Chem Phys 123:114101CrossRefGoogle Scholar
  75. 75.
    Zbiri M, Atanasov M, Daul C, Garcia-Lastra JM, Wesolowski TA (2004) Chem Phys Lett 397:441CrossRefGoogle Scholar
  76. 76.
    Jacob CR, Visscher L (2006) J Chem Phys 125:194104CrossRefGoogle Scholar
  77. 77.
    Piecuch P, Kowalski K, Pimienta ISO, McGuire MJ (2002) Int Rev Phys Chem 21:527CrossRefGoogle Scholar
  78. 78.
    Piecuch P, Kowalski K, Pimienta ISO, Fan PD, Lodriguito M, McGuire MJ, Kucharski SA, Kuś T, Musiał M (2004) Theor Chem Acc 112:349CrossRefGoogle Scholar
  79. 79.
    Kowalski K, Piecuch P (2001) J Chem Phys 115:2966CrossRefGoogle Scholar
  80. 80.
    Kowalski K, Piecuch P (2002) J Chem Phys 116:7411CrossRefGoogle Scholar
  81. 81.
    Kowalski K, Piecuch P (2004) J Chem Phys 120:1715CrossRefGoogle Scholar
  82. 82.
    Włoch M, Gour JR, Kowalski K, Piecuch P (2005) J Chem Phys 122:214107CrossRefGoogle Scholar
  83. 83.
    Kowalski K, Hirata S, Włoch M, Piecuch P, Windus TL (2005) J Chem Phys 123:074319CrossRefGoogle Scholar
  84. 84.
    Coussan S, Ferro Y, Trivella A, Roubin P, Wieczorek R, Manca C, Piecuch P, Kowal-ski K, Włoch M, Kucharski SA, Musiał M (2006) J Phys Chem A 110:3920CrossRefGoogle Scholar
  85. 85.
    Kowalski K, Krishnamoorthy S, Villa O, Hammond JR, Govind N (2010) J Chem Phys 132:154103CrossRefGoogle Scholar
  86. 86.
    Kowalski K, Piecuch P (2001) J Chem Phys 115:643CrossRefGoogle Scholar
  87. 87.
    Kowalski K, Piecuch P (2001) Chem Phys Lett 347:237CrossRefGoogle Scholar
  88. 88.
    Kucharski SA, Włoch M, Musiał M, Bartlett RJ (2001) J Chem Phys 115:8263CrossRefGoogle Scholar
  89. 89.
    Kowalski K, Piecuch P (2000) J Chem Phys 113:8490CrossRefGoogle Scholar
  90. 90.
    Hirata S, Nooijen M, Grabowski I, Bartlett RJ (2001) J Chem Phys 114:3919. 115, 3967 (2001) [Erratum]Google Scholar
  91. 91.
    Watts JD, Bartlett RJ (1995) Chem Phys Lett 233:81CrossRefGoogle Scholar
  92. 92.
    Christiansen O, Koch H, Jørgensen P (1996) J Chem Phys 105:1451CrossRefGoogle Scholar
  93. 93.
    Christiansen O, Koch H, Jørgensen P, Olsen J (1996) Chem Phys Lett 256:185CrossRefGoogle Scholar
  94. 94.
    Koch H, Christiansen O, Jørgensen P, Olsen J (1995) Chem Phys Lett 244:75CrossRefGoogle Scholar
  95. 95.
    Christiansen O, Koch H, Jørgensen P (1995) J Chem Phys 103:7429CrossRefGoogle Scholar
  96. 96.
    Kowalski K (2009) J Chem Phys 130:194110CrossRefGoogle Scholar
  97. 97.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 102:479CrossRefGoogle Scholar
  98. 98.
    Urban M, Noga J, Cole SJ, Bartlett RJ (1985) J Chem Phys 83:4041CrossRefGoogle Scholar
  99. 99.
    Piecuch P, Kowalski K (2000) In: Leszczyński J (ed) Computational chemistry: reviews of current trends, vol 5. World Scientific, Singapore, pp 1–104CrossRefGoogle Scholar
  100. 100.
    Kowalski K, Piecuch P (2000) J Chem Phys 113:18CrossRefGoogle Scholar
  101. 101.
    Hirata S, Fan PD, Auer AA, Nooijen M, Piecuch P (2004) J Chem Phys 121:12197CrossRefGoogle Scholar
  102. 102.
    Gwaltney SR, Head-Gordon M (2000) Chem Phys Lett 323:21CrossRefGoogle Scholar
  103. 103.
    Gwaltney SR, Head-Gordon M (2001) J Chem Phys 115:2014CrossRefGoogle Scholar
  104. 104.
    Kucharski SA, Bartlett RJ (1998) J Chem Phys 108:5243CrossRefGoogle Scholar
  105. 105.
    Taube AG, Bartlett RJ (2008) J Chem Phys 128:044110CrossRefGoogle Scholar
  106. 106.
    Taube AG, Bartlett RJ (2008) J Chem Phys 128:044111CrossRefGoogle Scholar
  107. 107.
    Stanton JF (1997) Chem Phys Lett 281:130CrossRefGoogle Scholar
  108. 108.
    Crawford TD, Stanton JF (1998) Int J Quant Chem 70:601CrossRefGoogle Scholar
  109. 109.
    Kowalski K, Piecuch P (2005) J Chem Phys 122:074107CrossRefGoogle Scholar
  110. 110.
    Piecuch P, Kowalski K, Fan PD, Pimienta ISO (2003) In: Maruani J, Lefebvre R, Brändas E (eds) Progress in theoretical chemistry and physics, vol 12. Kluwer, Dordrecht, pp 119–206Google Scholar
  111. 111.
    Piecuch P, Włoch M, Varandas AJC (2007) In: Lahmar S, Maruani J, Wilson S, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 16. Springer, Dordrecht, pp 63–121Google Scholar
  112. 112.
    Lodriguito M, Piecuch P (2008) In: Wilson S, Grout P, Maruani J, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 18. Springer, Dordrecht, pp 67–174Google Scholar
  113. 113.
    Li W, Gour JR, Piecuch P, Li S (2009) J Chem Phys 131:114109CrossRefGoogle Scholar
  114. 114.
    Li W, Piecuch P (2010) J Phys Chem A 114:6721CrossRefGoogle Scholar
  115. 115.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  116. 116.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  117. 117.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796CrossRefGoogle Scholar
  118. 118.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC et al (2003) Gaussian 03, revision B.03. Gaussian, Inc, Pittsburgh PAGoogle Scholar
  119. 119.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257CrossRefGoogle Scholar
  120. 120.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213CrossRefGoogle Scholar
  121. 121.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4:294CrossRefGoogle Scholar
  122. 122.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650CrossRefGoogle Scholar
  123. 123.
    Sadlej AJ (1988) Coll Czech Chem Commun 53:1995CrossRefGoogle Scholar
  124. 124.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  125. 125.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  126. 126.
    Piecuch P, Kucharski SA, Kowalski K, Musiał M (2002) Comp Phys Commun 149:71CrossRefGoogle Scholar
  127. 127.
    ADF2009 suite of programs. Theoretical Chemistry Department, Vrije Universiteit, Amsterdam. http://www.scm.com
  128. 128.
    Wesolowski TA, Weber J (1996) Chem Phys Lett 248:71CrossRefGoogle Scholar
  129. 129.
    Gritsenko OV, Schipper PRT, Baerends EJ (1999) Chem Phys Lett 302:199CrossRefGoogle Scholar
  130. 130.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Phys Rev B 48:4978CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Georgios Fradelos
    • 1
  • Jesse J. Lutz
    • 2
  • Tomasz A. Wesołowski
    • 1
  • Piotr Piecuch
    • 2
  • Marta Włoch
    • 3
  1. 1.Département de Chimie PhysiqueUniversité de GenèveGenève 4Switzerland
  2. 2.Department of ChemistryMichigan State UniversityMichiganUSA
  3. 3.Department of ChemistryMichigan Technological UniversityHoughtonUSA

Personalised recommendations