Skip to main content

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 22))

Abstract

The theory for a single excited state based on Kato’s theorem is revisited. Density scaling proposed by Chan and Handy is used to construct a Kohn-Sham scheme with a scaled density. It is shown that there exists a value of the scaling factor for which the correlation energy disappears. Generalized OPM and KLI methods incorporating correlation are proposed. A ζKLI method as simple as the original KLI method is presented for excited states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hohenberg P, Kohn W (1864) Phys Rev 136:B864

    Article  Google Scholar 

  2. Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274; Gunnarsson O, Jonson M, Lundqvist BI (1979) Phys Rev B 20:3136

    Google Scholar 

  3. von Barth U (1979) Phys Rev A 20:1693

    Article  Google Scholar 

  4. Slater JC (1974) Quantum theory of molecules and solids, vol 4. McGraw-Hill, New York

    Google Scholar 

  5. Theophilou AK (1978) J Phys C 12:5419

    Article  Google Scholar 

  6. Perdew JP, Levy M (1985) Phys Rev B 31:6264; Levy M, Perdew JP (1985) In: Dreizler RM, da Providencia J (eds) Density functional methods in physics. NATO ASI Series B, vol 123. Plenum, New York, p 11

    Google Scholar 

  7. Lieb EH (1985) In: Dreizler RM, da Providencia J (eds) Density functional methods in physics. NATO ASI Series B, vol 123. Plenum, New York, p 31

    Book  Google Scholar 

  8. Fritsche L (1986) Phys Rev B 33:3976; (1987) Int J Quantum Chem 21:15

    Google Scholar 

  9. English H, Fieseler H, Haufe A (1988) Phys Rev A 37:4570

    Article  Google Scholar 

  10. Gross EKU, Oliveira LN, Kohn W (1988) Phys Rev A 37:2805, 2809, 2821

    Google Scholar 

  11. Nagy Á (1994) Phys Rev A 49:3074

    Article  CAS  Google Scholar 

  12. Görling A (1996) Phys Rev A 54:3912

    Article  Google Scholar 

  13. Görling A, Levy M (1995) Int J Quantum Chem S 29:93; (1993) Phys Rev B 47:13105

    Google Scholar 

  14. Kohn W (1986) Phys Rev A 34:737; (1995) Nagy Int J Quantum Chem S 29:297

    Google Scholar 

  15. Nagy Á (1995) Int J Quantum Chem 56:225

    Article  CAS  Google Scholar 

  16. Nagy Á (1996) J Phys B 29:389

    Article  CAS  Google Scholar 

  17. Nagy Á (1997) Adv Quant Chem 29:159

    Article  CAS  Google Scholar 

  18. Singh R, Deb BD (1999) Phys Rep 311:47

    Article  CAS  Google Scholar 

  19. Nagy Á (1998) Int J Quantum Chem 69:247

    Article  CAS  Google Scholar 

  20. Gidopoulos NI, Papakonstantinou P, Gross EKU (2001) Phys Rev Lett 88:033003

    Article  Google Scholar 

  21. Nagy Á (2001) J Phys B 34:2363

    Article  CAS  Google Scholar 

  22. Tasnádi F, Nagy Á (2003) Int J Quantum Chem 92:234

    Article  Google Scholar 

  23. Tasnádi F, Nagy Á (2003) J Phys B 36:4073

    Article  Google Scholar 

  24. Tasnádi F, Nagy Á (2003) J Chem Phys 119:4141

    Article  Google Scholar 

  25. Nagy Á (1998) Int J Quantum Chem 70:681

    Article  CAS  Google Scholar 

  26. Nagy Á (1999) In: Gonis A, Kioussis N, Ciftan M (eds) Electron correlations and materials properties. Kluwer, New York, p 451

    Chapter  Google Scholar 

  27. Ayers PW, Levy M (2009) Phys Rev A 80:012508

    Article  Google Scholar 

  28. Levy M, Nagy Á (1999) Phys Rev Lett 83:4631

    Article  Google Scholar 

  29. Nagy Á, Levy M (2001) Phys Rev A 63:2502

    Article  Google Scholar 

  30. Nagy Á (2005) Chem Phys Lett 411:492

    Article  CAS  Google Scholar 

  31. Nagy Á (2005) J Chem Phys 123:044105

    Article  CAS  Google Scholar 

  32. Chan GK-L, Handy NC (1999) Phys Rev A 59:2670

    Article  CAS  Google Scholar 

  33. Görling A (1999) Phys Rev A 59:3359; (2000) Phys Rev Lett 85:4229

    Google Scholar 

  34. Sahni V, Massa L, Singh R, Slamet M (2001) Phys Rev Lett 87:113002; Sahni V, Pan XY (2003) Phys Rev Lett 90:123001

    Google Scholar 

  35. Kryachko ES, Ludena EV, Koga T (1992) J Math Chem 11:325

    Article  CAS  Google Scholar 

  36. Gross EKU, Dobson JF, Petersilka M (1996) In: Nalewajski R (ed) Density functional theory, Topics in Current Chemistry, vol 181. Springer-Verlag, Heidelberg, p 81

    Google Scholar 

  37. Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (2006) Time-deendent density functional theory. Series Lecture Notes in Physics, vol 706, and references therein. Springer-Verlag, Heidelberg

    Google Scholar 

  38. Handy NC (1996) In: Bicout D, Field M (eds) Quantum mechanical simulation methods for studying biological systems. Springer-Verlag, Heidelberg, p 1

    Chapter  Google Scholar 

  39. Kato T (1957) Commun Pure Appl Math 10:151

    Article  Google Scholar 

  40. Steiner E (1963) J Chem Phys 39:2365; March NH (1975) Self-consistent fields in atoms. Pergamon, Oxford

    Google Scholar 

  41. Pack RT, Brown WB (1966) J Chem Phys 45:556

    Article  CAS  Google Scholar 

  42. Nagy Á, Sen KD (2000) J Phys B 33:1745

    Article  CAS  Google Scholar 

  43. Ayers PW (2000) Proc Natl Acad Sci 97:1959

    Article  CAS  Google Scholar 

  44. Nagy Á, Sen KD (2000) Chem Phys Lett 332:154

    Article  CAS  Google Scholar 

  45. Nagy Á, Sen KD (2001) J Chem Phys 115:6300

    Article  CAS  Google Scholar 

  46. Gálvez FJ, Porras J, Angulo JC, Dehesa JS (1988) J Phys B 21:L271

    Article  Google Scholar 

  47. Angulo JC, Dehesa JS, Gálvez FJ (1990) Phys Rev A 42:641; erratum (1991) Phys Rev A 43:4069

    Google Scholar 

  48. Angulo JC, Dehesa JS (1991) Phys Rev A 44:1516

    Article  CAS  Google Scholar 

  49. Gálvez FJ, Porras J (1991) Phys Rev A 44:144

    Article  Google Scholar 

  50. Porras J, Gálvez FJ (1992) Phys Rev A 46:105

    Article  CAS  Google Scholar 

  51. Esquivel RO, Chen J, Stott MJ, Sagar RP, Smith Jr VH (1993) Phys Rev A 47:936

    Article  CAS  Google Scholar 

  52. Esquivel RO, Sagar RP, Smith Jr VH, Chen J, Stott MJ (1993) Phys Rev A 47:4735

    Article  CAS  Google Scholar 

  53. Dehesa JS, Koga T, Romera E (1994) Phys Rev A 49:4255

    Article  Google Scholar 

  54. Koga T (1997) Theor Chim Acta 95:113; Koga T, Matsuyama H (1997) Theor Chim Acta 98:129

    Google Scholar 

  55. Angulo JC, Koga T, Romera E, Dehesa JS (2000) THEOCHEM 501–502:177

    Article  Google Scholar 

  56. Langreth DC, Perdew JP (1977) Phys Rev B 15:2884; Harris J, Jones RO (1974) J Phys F 4:1170; Harris J (1984) Phys Rev A 29:1648

    Google Scholar 

  57. Nagy Á (2001) In: Maruani J, Minot C, McWeeny R, Smeyers YG, Wilson S, (eds) New trends in quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, vols 1, 6. Kluwer, Dordrecht, p 13; Nagy Á (2001) Adv Quant Chem 39:35

    Google Scholar 

  58. Nagy Á (2002) In: Barone V, Bencini A, Fantucci P (eds) Recent advances in computational chemistry, vol 1. Recent advances in the density functional methods, Part III. World Scientific, Singapore, p 247

    Google Scholar 

  59. Yang WT, Ayers PW, Wu Q (2004) Phys Rev Lett 92:146404

    Article  Google Scholar 

  60. Sharp RT, Horton GK (1953) Phys Rev A 30:317; Aashamar K, Luke TM, Talman JD (1978) At Data Nucl Data Tables 22:443

    Google Scholar 

  61. Krieger JB, Li Y, Iafrate GJ (1992) Phys Rev A 45:101; (1992) Phys Rev A 46:5453

    Google Scholar 

  62. Nagy Á (1997) Phys Rev A 55:3465

    Article  CAS  Google Scholar 

  63. Moore CE (1949) Atomic energy levels NBS circular No 467. US Govt. Printing Office, Washington, DC

    Google Scholar 

Download references

Acknowledgements

This work is supported by the TAMOP 4.2.1/B-09/1/KONV-2010-0007 project. The project is co-financed by the European Union and the European Social Fund. Grant OTKA No. K67923 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nagy, Á. (2012). Density Scaling for Excited States. In: Hoggan, P., Brändas, E., Maruani, J., Piecuch, P., Delgado-Barrio, G. (eds) Advances in the Theory of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2076-3_11

Download citation

Publish with us

Policies and ethics