Time Asymmetry and the Evolution of Physical Laws

  • Erkki J. Brändas
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 22)


In previous studies we have advocated a retarded-advanced sub-dynamics that goes beyond standard probabilistic formulations supplying a wide-range of interpretations. The dilemma of time reversible microscopic physical laws and the irreversible nature of thermodynamical equations are re-examined from this point of view. The subjective character of statistical mechanics, i.e. with respect to the theoretical formulation relative to a given level of description, is reconsidered as well. A complex symmetric ansatz, incorporating both time reversible and time irreversible evolutions charts the evolution of the basic laws of nature and reveals novel orders of organization. Examples are drawn from the self-organizational behaviour of complex biological systems as well as background dependent relativistic structures including Einstein’s laws of relativity and the perihelion movement of Mercury. A possible solution to the above mentioned conundrum is provided for, as a consequence of a specific informity rule in combination with a Gödelian like decoherence code protection. The theory comprises an interesting cosmological scenario in concert with the second law.


Black Hole Event Horizon Jordan Block Contractive Semigroup Informity Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present results have been presented at QSCP XV held at Magdalene College, Cambridge, England, August 31- September 5, 2010. The author thanks the organisers of QSCP XV, in particular the Chair Prof. Philip E. Hoggan for an excellent programme and organization as well as generous hospitality.


  1. 1.
    L. Sklar, Physics and Chance. (Cambridge, University Press, 1993).Google Scholar
  2. 2.
    I. Prigogine, The End of Certainty. Time, Chaos and the New Laws of Nature. The Free Press, Simon & Schuster Inc., New York (1996).Google Scholar
  3. 3.
    E. Balslev, J. M. Combes, Commun. Math. Phys. 22, 280 (1971).Google Scholar
  4. 4.
    S. Nakajima, Progr. Theoret. Phys. 20, 948 (1958).Google Scholar
  5. 5.
    R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).Google Scholar
  6. 6.
    Ch. Obcemea, E. Brändas, Ann. Phys. 151, 383 (1983).Google Scholar
  7. 7.
    I. Prigogine, Physica, A263, 528 (1999).Google Scholar
  8. 8.
    J. Kumicák, E. Brändas, Int. J. Quant. Chem. 32 669 (1987); ibid. 46, 391 (1993).Google Scholar
  9. 9.
    E. J. Brändas, I. E. Antoniou, Int. J. Quant. Chem. 46 419 (1993).Google Scholar
  10. 10.
    E. Brändas, Chatzidimitriou-Dreismann, Int. J. Quant. Chem. 40, 649 (1991).Google Scholar
  11. 11.
    E. Brändas, Complex Symmetry, Jordan Blocks and Microscopic Selforganization: An examination of the limits of quantum theory based on nonself-adjoint extensions with illustrations from chemistry and physics. in Molecular Self-Organization in Micro-, Nano, and Macro-dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins. Eds. N. Russo, V. Antonchenko and E. Kryachko; NATO Science for Peace and Security Series A: Chemistry and Biology, Springer Science+Business Media B.V., Dordrecht, 49-87 (2009).Google Scholar
  12. 12.
    E. Brändas, Int. J. Quant. Chem. 111, 215 (2011); ibid. 111, 1321 (2011).Google Scholar
  13. 13.
    E. Engdahl, E. Brändas, M. Rittby, N. Elander, J. Math. Phys. 27, 2629 (1986).Google Scholar
  14. 14.
    E. Brändas, Resonances and Dilatation Analyticity in Liouville Space. Adv. Chem. Phys. 99, 211 (1997).Google Scholar
  15. 15.
    E. Brändas, Mol. Phys. 108, 3259 (2010).Google Scholar
  16. 16.
    E. Brändas, N. Elander Eds., Resonances-The Unifying Route Towards the Formulation of Dynamical Processes – Foundations and Applications in Nuclear, Atomic and Molecular Physics, Springer Verlag, Berlin, Lecture Notes in Physics, 325, pp. 1-564 (1989).Google Scholar
  17. 17.
    E. Nelson, Ann. Math. 70 572, (1959).Google Scholar
  18. 18.
    E. Brändas, P. Froelich, M. Hehenberger, Int. J. Quant. Chem. 14419 (1978).Google Scholar
  19. 19.
    E. Engdahl, E. Brändas, M. Rittby, N. Elander, Phys. Rev. A 37, 3777 (1988).Google Scholar
  20. 20.
    M. A. Natiello, E. J. Brändas, A. R. Engelmann, Int. J. Quant. Chem. S21 555 (1987).Google Scholar
  21. 21.
    C. E. Reid, E. Brändas, Lecture Notes in Physics 325 476 (1989).Google Scholar
  22. 22.
    E. Brändas, Int. J. Quant. Chem. 109, 2860 (2009).Google Scholar
  23. 23.
    F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, Vols I, II (1959).Google Scholar
  24. 24.
    A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).Google Scholar
  25. 25.
    E. Brändas, Adv. Quant. Chem. 54, 115 (2008).Google Scholar
  26. 26.
    E. J. Brändas, The Equivalence Principle from a Quantum Mechanical Perspective, in Frontiers in Quantum Systems in Chemistry and Physics, eds. P. Piecuch, J. Maruani, G. Delgado-Barrio and S. Wilson, Springer Verlag, Vol.19, 73 (2009).Google Scholar
  27. 27.
    P.-O. Löwdin, Some Comments on the Foundations of Physics, World Scientific, Singapore, (1998).Google Scholar
  28. 28.
    C. N. Yang, Rev. Mod. Phys. 34 694 (1962).Google Scholar
  29. 29.
    R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).Google Scholar
  30. 30.
    R. Penrose, Cycles of Time, The Bodly Head Random House, London SW1V 2SA (2010).Google Scholar
  31. 31.
    H. Pfister, General Relativity and Gravitation 39 (11), 1735 (2007). Company, Vols. I, II 1959).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Erkki J. Brändas
    • 1
  1. 1.Department of Quantum ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations