Stress Ecology pp 295-309 | Cite as

Multiple Stressors as Environmental Realism: Synergism or Antagonism

  • Christian E. W. Steinberg


Under field conditions, organisms seldom live in fulfillment of all their biotic and abiotic requirements. Rather, they have to face a wide range of different discomforts such as non-optimal temperatures, unpleasant light qualities and quantities, drought, flood, unbalanced nutrient compositions, hypoxia or hyperoxia, highly acidic or highly alkaline conditions, saline environments, and natural xenobiotic chemicals among the abiotic factors. Biotic factors include intra- and interspecific competitors as well as various enemies including predators, parasites, and pathogens.


Acid Stress Induce Systemic Resistance Inducible Defense Mountain Birch Paenibacillus Polymyxa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alber M, Swenson EM, Adamowicz SC, Mendelssohn IA (2008) Estuar Coast Shelf Sci 80:1–11CrossRefGoogle Scholar
  2. Barry MJ (2000) Effects of endosulfan on Chaoborus-induced life-history shifts and morphological defenses in Daphnia pulex. J Plankton Res 22:1705–1718CrossRefGoogle Scholar
  3. Bednarska AJ, Laskowski R (2009) Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae). Environ Pollut 157:1597–1602PubMedCrossRefGoogle Scholar
  4. Beklioglu M, Akka SB, Ozcan HE, Bezirci G, Togan I (2010) Effects of 4-nonylphenol, fish predation and food availability on survival and life history traits of Daphnia magna Straus. Ecotoxicology 19:901–910PubMedCrossRefGoogle Scholar
  5. Ben-Ami F, Mouton L, Ebert D (2008) The effects of multiple infections on the expression and evolution of virulence in a Daphnia-endoparasite system. Evolution 62:1700–1711PubMedCrossRefGoogle Scholar
  6. Bijlsma R, Loeschcke V (2005a) Environmental stress, adaptation and evolution: an overview. J Evol Biol 18:744–749PubMedCrossRefGoogle Scholar
  7. Bijlsma R, Loeschcke V (2005b) Environmental stress, adaptation and evolution: an overview. J Evol Biol 18:744–749PubMedCrossRefGoogle Scholar
  8. Boone MD, Bridges CM, Fairchild JF, Little EE (2005) Multiple sublethal chemicals negatively affect tadpoles of the green frog, Rana clamitans. Environ Toxicol Chem 24:1267–1272PubMedCrossRefGoogle Scholar
  9. Bridges CM, Boone MD (2003) The interactive effects of UV-B and insecticide exposure on tadpole survival, growth and development. Biol Conserv 113:49–54CrossRefGoogle Scholar
  10. Burks RL, Jeppesen E, Lodge DM (2000) Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos 88:139–147CrossRefGoogle Scholar
  11. Cardoso PG, Brandão A, Pardal MA, Raffaelli D, Marques JC (2005) Resilience of Hydrobia ulvae populations to anthropogenic and natural disturbances. Mar Ecol Prog Ser 289:191–199CrossRefGoogle Scholar
  12. Chen CY, Hathaway KM, Folt CL (2004) Multiple stress effects of Vision® herbicide, pH, and food on zooplankton and larval amphibian species from forest wetlands. Eviron Toxicol Chem 23:823–831CrossRefGoogle Scholar
  13. Coors A, De Meester L (2008) Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. J Appl Ecol 45:1820–1828CrossRefGoogle Scholar
  14. Coors A, De Meester L (2010) Fitness and virulence of a bacterial endoparasites in an environmentally stressed crustacean host. Parasitology. doi:10.1017/S0031182010000995Google Scholar
  15. de los Santos CB, Brun FG, Bouma TJ, Vergara JJ, Pérez-Lloréns JL (2010) Acclimation of seagrass Zostera noltii to co-occurring hydrodynamic and light stresses. Mar Ecol Prog Ser 398:127–135CrossRefGoogle Scholar
  16. Deegan LA, Bowen JL, Drake D, Fleeger JW, Friedrich CT, Galván KA, Hobbi JE, Hopkinson C, Johnson DS, Johnson JM, LeMay LE, Miller E, Peerson BJ, Picard C, Sheldon S, Sutherland M, Vallino J, Warren RS (2007) Susceptibility of salt marshes to nutrient enrichment and predator removal. Ecol Appl 17:S42–S63CrossRefGoogle Scholar
  17. Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694PubMedCrossRefGoogle Scholar
  18. Distel CA, Boone MD (2009) Effects of aquatic exposure to the insecticide carbaryl and density on aquatic and terrestrial growth and survival in American toads. Environ Toxicol Chem 28:1963–1969PubMedCrossRefGoogle Scholar
  19. Eränen JK, Nilsen J, Zverev VE, Kozlov MV (2009) Mountain birch under multiple stressors – heavy metal-resistant populations co-resistant to biotic stress but maladapted to abiotic stress. J Evol Biol 22:840–851PubMedCrossRefGoogle Scholar
  20. Ernst B, Hoeger SJ, O’Brien E, Dietrich DR (2007) Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens. Aquat Toxicol 82:15–26PubMedCrossRefGoogle Scholar
  21. Fausch KD, Baxter CV, Murakami M (2010) Multiple stressors in north temperate streams: lessons from linked forest-stream ecosystems in northern Japan. Freshwat Biol 55(S1):120–134CrossRefGoogle Scholar
  22. Fernandes I, Duarte S, Cássio F, Pascoal C (2009) Mixture of zinc and phosphate affect leaf litter decomposition by aquatic fungi in streams. Sci Total Environ 407:4283–4288PubMedCrossRefGoogle Scholar
  23. Ferreira ALB, Serra P, Soares AMVM, Loureiro S (2010) The influence of natural stressors on the toxicity of nickel to Daphnia magna. Environ Sci Pollut Res 17:1217–1229CrossRefGoogle Scholar
  24. Folt CL, Chen CY, Moore MV, Burnaford J (1999) Synergism and antagonism among multiple stressors. Limnol Oceanogr 44:864–877CrossRefGoogle Scholar
  25. Gervais JA, Hunter CM, Anthony RG (2006) Interactive effects of prey and p, p’-DDE on burrowing owl population dynamics. Ecol Appl 16:666–677PubMedCrossRefGoogle Scholar
  26. Goldman Martone R, Wasson K (2008) Impacts and interactions of multiple human perturbations in a California salt marsh. Oecologia 158:151–163PubMedCrossRefGoogle Scholar
  27. Hansen LK, Frost PC, Larson JH, Metcalfe CD (2008) Poor elemental food quality reduces the toxicity of fluoxetine on Daphnia magna. Aquat Toxicol 86:99–103PubMedCrossRefGoogle Scholar
  28. Herbrandson C, Bradbury SP, Swackhamer DL (2003) Influence of suspended solids on acute toxicity of carbofuran to Daphnia magna: I. Interactive effects. Aquat Toxicol 63:333–342PubMedCrossRefGoogle Scholar
  29. Heugens EHW, Hendriks AJ, Dekker T, van Straalen NM, Admiraal W (2001) A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31:247–284PubMedCrossRefGoogle Scholar
  30. Hoang A (2001) Immune response to parasitism reduces resistance of Drosophila melanogaster to desiccation and starvation. Evolution 55:2353–2358PubMedGoogle Scholar
  31. Holmer M, Wirachwong P, Thomsen MS (2011) Negative effects of stress-resistant drift algae and high temperature on a small ephemeral seagrass species. Mar Biol 158:297–309CrossRefGoogle Scholar
  32. Holmstrup M, Bindesbøl AM, Oostingh GJ, Duschl A, Scheil V, Köhler HR, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz P, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762PubMedCrossRefGoogle Scholar
  33. Hunter K, Pyle G (2004) Morphological response of Daphnia pulex to Chaoborus americanus kairomone in the presence and absence of metals. Environ Toxicol Chem 23:1311–1316PubMedCrossRefGoogle Scholar
  34. Jacobson T, Holmström K, Yang G, Ford AT, Berger U, Sundelin B (2010) Perfluorooctane sulfonate accumulation and parasite infestation in a field population of the amphipod Monoporeia affinis after microcosm exposure. Aquat Toxicol 98:99–106PubMedCrossRefGoogle Scholar
  35. Jansen M, Stoks R, Coors A, De Meester L (2010) No evidence for a cost of selection by carbaryl exposure in terms of vulnerability to fish predation in Daphnia magna. Hydrobiologia 643:123–128CrossRefGoogle Scholar
  36. Jones DK, Hammond JI, Relyea RA (2011) Competitive stress can make the herbicide roundup® more deadly to larval amphibians. Environ Toxicol Chem 30:446–454PubMedCrossRefGoogle Scholar
  37. Junkersdorf B, Bauer H, Gutzeit HO (2000) Electromagnetic fields enhance the stress response at elevated temperatures in the nematode Caenorhabditis elegans. Bioelectromagnetics 21:100–106PubMedCrossRefGoogle Scholar
  38. Kaneko G, Yoshinaga T, Yanagawa Y, Ozaki Y, Tsukamoto K, Watabe S (2011) Calorie restriction-induced maternal longevity is transmitted to their daughters in a rotifer. Funct Ecol 25:209–216CrossRefGoogle Scholar
  39. Kerby JL, Storfer A (2009) Combined effects of atrazine and chlorpyrifos on susceptibility of the tiger salamander to Ambystoma tigrinum virus. Ecohealth 6:91–98PubMedCrossRefGoogle Scholar
  40. Laskowski R, Bednarska AJ, Kramarz PE, Loureiro S, Scheil V, Kudłek J, Holmstrup M (2010) Interactions between toxic chemicals and natural environmental factors – a meta-analysis and case studies. Sci Total Environ 408:3763–3774PubMedCrossRefGoogle Scholar
  41. Lass S, Bittner K (2002) Facing multiple enemies: parasitised hosts respond to predator kairomones. Oecologia 132:344–349CrossRefGoogle Scholar
  42. Lighton JRB (2007) Hot hypoxic flies: whole-organism interactions between hypoxic and thermal stressors in Drosophila melanogaster. J Therm Biol 32:134–143CrossRefGoogle Scholar
  43. Mackey MJ, Boone MD (2009) Single and interactive effects of malathion, overwintered green frog tadpoles, and cyanobacteria on gray treefrog tadpoles. Environ Toxicol Chem 28:637–643PubMedCrossRefGoogle Scholar
  44. Matson CW, Timme-Laragy AR, Di Giulio RT (2008) Fluoranthene, but not benzo[a]pyrene, interacts with hypoxia resulting in pericardial effusion and lordosis in developing zebrafish. Chemosphere 74:149–154PubMedCrossRefGoogle Scholar
  45. Moss B (2010) Climate change, nutrient pollution and the bargain of Dr Faustus. Freshwat Biol 55(suppl 1):175–187CrossRefGoogle Scholar
  46. Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986PubMedCrossRefGoogle Scholar
  47. Olsvik PA, Heier LS, Rosseland BO, Teien HC, Salbu B (2010) Effects of combined γ-irradiation and metal (Al  +  Cd) exposures in Atlantic salmon (Salmo salar L.). J Environ Radioact 101:230–236PubMedCrossRefGoogle Scholar
  48. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  49. Paoletti E (2006) Impact of ozone on Mediterranean forest: a review. Environ Pollut 144:463–474PubMedCrossRefGoogle Scholar
  50. Pauwels K, De Meesters L, Put S, Decaestecker E, Stoks R (2010a) Rapid evolution of phenoloxidase expression, a component of innate immune function, in a natural population of Daphnia magna. Limnol Oceanogr 55:1408–1413CrossRefGoogle Scholar
  51. Pestana JLT, Loureiro S, Baird DJ, Soares AMVM (2009) Fear and loathing in the benthos: responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk. Aquat Toxicol 93:138–149PubMedCrossRefGoogle Scholar
  52. Pestana JLT, Loureiro S, Baird DJ, Soares AMVM (2010) Pesticide exposure and inducible antipredator responses in the zooplankton grazer, Daphnia magna Straus. Chemosphere 78:241–248PubMedCrossRefGoogle Scholar
  53. Poschenrieder C, Tolrà R, Barceló J (2006) Can metal defend plants against biotic stress? Trends Plant Sci 11:288–295PubMedCrossRefGoogle Scholar
  54. Puglis HJ, Boone MD (2007) Effects of a fertilizer, an insecticide, and a pathogenic fungus on hatching and survival of bullfrog (Rana catesbeiana) tadpoles. Environ Toxicol Chem 26:2198–2201PubMedCrossRefGoogle Scholar
  55. Singh SK, Kakani VG, Surabhi GK, Reddy KR (2010) Cowpea (Vigna unguiculara [L.] Walp.) genotypes response to multiple abiotic stresses. J Photochem Photobiol B 100:135–146PubMedCrossRefGoogle Scholar
  56. Slocum MG, Mendelssohn IA (2008) Effects of three stressors on vegetation in an oligohaline marsh. Freshwat Biol 53:1783–1796CrossRefGoogle Scholar
  57. Steinberg CEW, Ouerghemmi N, Herrmann S, Bouchnak R, Timofeyev MA, Menzel R (2010a) Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. Hydrobiologia 652:223–236CrossRefGoogle Scholar
  58. Stone D, Jepson P, Kramarz P, Laskowski R (2001) Time to death response in carabid beetles exposed to multiple stressors along a gradient of heavy metal pollution. Environ Pollut 113:239–244PubMedCrossRefGoogle Scholar
  59. Stueckle TA, Shock B, Foran CM (2009) Multiple stressor effects of methoprene, permethrin, and salinity on limb regeneration and molting in the mud fiddler crab (Uca pugnax). Environ Toxicol Chem 28:2348–2359PubMedCrossRefGoogle Scholar
  60. Teplitsky C, Laurila A (2007) Flexible defense strategies: competition modifies investment in behavioral vs. morphological defenses. Ecology 88:1641–1646PubMedCrossRefGoogle Scholar
  61. Teplitsky C, Piha H, Laurila A, Merilä J (2005) Common pesticide increases costs of antipredator defenses in Rana temporaria tadpoles. Environ Sci Technol 39:6079–6085PubMedCrossRefGoogle Scholar
  62. Teplitsky C, Räsänen K, Laurila A (2007) Adaptive plasticity in stressful environments: acidity constrains inducible defences in Rana arvalis. Evol Ecol Res 9:447–458Google Scholar
  63. van der Geest HG, Soppe WJ, Greve GD, Kroon A, Kraak MHS (2002) Combined effects of lowered oxygen and toxicants (copper and diazinon) on the mayfly Ephoron virgo. Environ Toxicol Chem 21:431–436PubMedGoogle Scholar
  64. Wei A, Chow-Fraser P (2005) Untangling the confounding effects of urbanization and high water level on the cover of emergent vegetation in Cootes Paradise Marsh, a degraded coastal wetland of Lake Ontario. Hydrobiologia 544:1–9CrossRefGoogle Scholar
  65. Wei A, Chow-Fraser P (2006) Synergistic impact of water level fluctuation and invasion of Glyceria on Typha in a freshwater marsh of Lake Ontario. Aquat Bot 84:63–69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Biology Laboratory of Freshwater and Stress EcologyHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations