Dispersive Wave Equations for Solids with Microstructure

  • Arkadi BerezovskiEmail author
  • Jüri Engelbrecht
  • Mihhail Berezovski
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 139)


The dispersive wave motion in solids with microstructure is considered in the one-dimensional setting in order to understand better the mechanism of dispersion. It is shown that the variety of dispersive wave propagation models derived by homogenization, continualisation, and generalization of continuum mechanics can be unified in the framework of dual internal variables theory.


Dispersive wave Internal variables Microstructured solids 



Support of the Estonian Science Foundation is gratefully acknowledged.


  1. 1.
    Maugin, G.A.: On some generalizations of Boussinesq and KdV systems. Proc. Estonian Acad. Sci. Phys. Math. 44, 40–55 (1995)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Santosa, F., Symes, W.W.: A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51, 984–1005 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Fish, J., Chen, W., Nagai, G.: Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int. J. Numer. Methods Eng. 54, 331–346 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Askes, H., Suiker, A.S.J., Sluys, L.J.: A classification of higher-order strain-gradient models – linear analysis. Arch. Appl. Mech. 72, 171–188 (2002)CrossRefzbMATHADSGoogle Scholar
  5. 5.
    Erofeyev, V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Love, A.E.H.: Mathematical Theory of Elasticity. Dover, New York (1944)zbMATHGoogle Scholar
  7. 7.
    Graff, K.F.: Wave Motion in Elastic Solids. Clarendon Press, Oxford (1975)zbMATHGoogle Scholar
  8. 8.
    Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  9. 9.
    Wang, Z.-P., Sun, C.T.: Modeling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion 36, 473–485 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, L.-L.: Foundations of Stress Waves. Elsevier, Amsterdam (2007)Google Scholar
  11. 11.
    Metrikine, A.V.: On causality of the gradient elasticity models. J. Sound Vib. 297, 727–742 (2006)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Phil. Mag. 85, 4127–4141 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235–254 (2008)CrossRefzbMATHADSGoogle Scholar
  14. 14.
    Maugin, G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15, 173–192 (1990)CrossRefADSGoogle Scholar
  15. 15.
    Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modelling. Acta Mech. 220, 349–363 (2011)Google Scholar
  16. 16.
    Christov, C.I., Maugin, G.A, Porubov, A.V.: On Boussinesq’s paradigm in nonlinear wave propagation. C. R. Mecanique 335, 521–535 (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Arkadi Berezovski
    • 1
    Email author
  • Jüri Engelbrecht
    • 1
  • Mihhail Berezovski
    • 1
  1. 1.Tallinn University of TechnologyTallinnEstonia

Personalised recommendations