Skip to main content

Global Climate Models and 20th and 21st Century Arctic Climate Change

Part of the Atmospheric and Oceanographic Sciences Library book series (ATSL,volume 43)

Abstract

We review the history of global climate model (GCM) development with regard to Arctic climate beginning with the ACSYS era. This was a time of rapid improvement in many models. We focus on those aspects of the Arctic climate system that are most likely to amplify the Arctic response to anthropogenic greenhouse gas forcing in the twentieth and twenty-first centuries. Lessons from past GCM modeling and the most likely near-future model developments are discussed. We present highlights of GCM simulations from two sophisticated climate models that have the highest Arctic amplification among the the models that participated in the World Climate Research Programme’s third Coupled Model Intercomparison Project (CMIP3). The two models are the Hadley Center Global Environmental Model (HadGEM1) and the Community Climate System Model version 3 (CCSM3). These two models have considerably larger climate change in the Arctic than the CMIP3 model mean by mid-twenty-first century. Thus, the surface warms by about 50% more on average north of 75N in HadGEM1 and CCSM3 than in the CMIP3 model mean, which amounts to more than three times the global average warming. The sea ice thins and retreats 50–100% more in HadGEM1 and CCSM3 than in the CMIP3 model mean. Further, the oceanic transport of heat into the Arctic increases much more in HadGEM1 and CCSM3 than in other CMIP3 models and contributes to the larger climate change.

Keywords

  • Arctic Ocean
  • Global Climate Model
  • Cloud Fraction
  • Arctic Climate
  • Flux Adjustment

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-2027-5_11
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-2027-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10
Fig. 11.11
Fig. 11.12

References

  • Arzel O, Fichefet T, Goosse H (2006) Sea ice evolution over the 20th and 21st centuries as ­simulated by the current AOGCMs. Ocean Model 12:401–415

    CrossRef  Google Scholar 

  • Beesley JA, Moritz RE (1999) Toward an explanation of the annul cycle of cloudiness over the arctic ocean. J Clim 12:395–415

    CrossRef  Google Scholar 

  • Bitz CM, Lipscomb WH (1999) An energy-conserving thermodynamic model of sea ice. J Geophys Res 104:15,669–15,677

    Google Scholar 

  • Bitz CM, Roe GH (2004) A mechanism for the high rate of sea-ice thinning in the arctic ocean. J Clim 18:3622–3631

    Google Scholar 

  • Bitz CM, Holland MM, Weaver AJ, Eby M (2001) Simulating the ice-thickness distribution in a coupled climate model. J Geophys Res 106:2441–2464

    CrossRef  Google Scholar 

  • Bitz CM, Fyfe JC, Flato GM (2002) Sea ice response to wind forcing from amip models. J Clim 15:522–536

    CrossRef  Google Scholar 

  • Bitz CM, Holland MM, Hunke EC, Moritz RE (2005) On the maintenance of the sea-ice edge. J Clim 18:2903–2921

    CrossRef  Google Scholar 

  • Bitz CM, Gent PR, Woodgate RA, Holland MM, Lindsay R (2006) The influence of sea ice on ocean heat uptake in response to increasing CO2. J Clim 19:2437–2450

    CrossRef  Google Scholar 

  • Bourke RH, Garrett RP (1987) Sea ice thickness distribution in the arctic ocean. Cold Reg Sci Tech 13:259–280

    CrossRef  Google Scholar 

  • Boville BA, Gent PR (1998) The NCAR climate system model, version one. J Clim 11:1115–1130

    CrossRef  Google Scholar 

  • Briegleb BP, Light B (2007) A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the community climate system model. NCAR/TN-472+STR

    Google Scholar 

  • Briegleb BP, Bitz CM, Hunke EC, Lipscomb WH, Schramm JL (2004) Scientific Description of the sea ice component in the community climate system model, version 3. NCAR/TN-463+STR

    Google Scholar 

  • Budyko MI (1969) The effect of solar radiatin variations on the climate of the earth. Tellus 21:611–619

    CrossRef  Google Scholar 

  • Cassano JJ, Uotila P, Lynch AH (2006) Changes in synoptic weather patterns in the polar regions in the 20th and 21st centuries. Part 1. Arctic. Int J Climatol 26. doi:10.1002/JOC.1306

    Google Scholar 

  • Chapman WL, Walsh JE (2007) Simulation of arctic temperature and pressure by global climate models. J Clim 20:609–632

    CrossRef  Google Scholar 

  • Collins WD et al (2006) The community climate system model, Version 3. J Clim 19:2122–2143

    CrossRef  Google Scholar 

  • Comiso JC (1995) SSM/I concentrations using the Bootstrap Algorithm. Tech Rep RP 1380, 40 pp, NASA, Technical Report

    Google Scholar 

  • Curry JA, Rossow WB, Randall D, Schramm JL (1996) Overview of arctic cloud and radiation charactereistics. J Clim 9:1731–1764

    CrossRef  Google Scholar 

  • Delworth TL et al (2006) CM2 global coupled climate models – part 1: formulation and simulation characteristics. J Clim 19:675–697

    CrossRef  Google Scholar 

  • Dethloff K, Rinke A, Lynch A, Dorn W, Saha S, Handorf D (2008) Chapter 8: Arctic regional climate models. In: Arctic climate change — The ACSYS decade and beyond, this volume

    Google Scholar 

  • deWeaver E, Bitz CM (2006) Atmospheric circulation and Arctic sea ice in CCSM3 at medium and high resolution. J Clim 19:2415–2436

    CrossRef  Google Scholar 

  • Driesschaert E, Fichefet T, Goosse H, Huybrechts P, Janssens L, Mouchet A, Munhove G, Brovkin V, Weber SL (2007) Modeling the influence of greenland ice sheet melting on the atlantic meridional overturning circulation during the next millennia. Geophys Res Lett 34:L10707

    CrossRef  Google Scholar 

  • Ebert EE, Curry JA (1993) An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J Geophys Res 98:10,085–10,109

    Google Scholar 

  • Fichefet T, Morales Maqueda M (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12,609–12,646

    Google Scholar 

  • Flato GM (2004) Sea-ice climate and sensitivity as simulated by several global climate models. Clim Dyn 23:229–241

    CrossRef  Google Scholar 

  • Flato GM, Hibler WD (1992) Modeling pack ice as a cavitating fluid. J Phys Oceanogr 22:626–651

    CrossRef  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    CrossRef  Google Scholar 

  • Gent PR, Craig AP, Bitz CM, Weatherly JW (2002) Parameterization improvements in an eddy-permitting ocean model. J Clim 13:1447–1459

    CrossRef  Google Scholar 

  • Gerdes R, Köberle C (2007) Comparison of arctic sea ice thickness variability in IPCC climate of the 20th century experiments and in ocean sea ice hindcasts. J Geophys Res 112:C04S13. doi:10.1029/2006JC003,616

    Google Scholar 

  • Girard E, Blanchet JP (2001) Simulation of arctic diamond dust, ice fog, and thin stratus using an explicit aerosol-cloud-radiation model. J Atmos Sci 58:1199–1221

    CrossRef  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06,104. doi:10.1029/2007JD008,972

    Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    CrossRef  Google Scholar 

  • Gordon HB, O’Farrell SP (1997) Transient climate change in the CSIRO coupled model with dynamics sea ice. Mon Weather Rev 125:875–907

    CrossRef  Google Scholar 

  • Gorodetskaya IV, Tremblay L-B, Lipert B, Cane MA, Cullather RI (2007) Modification of the arctic ocean short-wave radiation budget due to cloud and sea ice properties in coupled models and observations. J Climate 21:866–882

    Google Scholar 

  • Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos Trans R Soc A 364:1709–1731

    CrossRef  Google Scholar 

  • Gregory JM, Mitchell JFB (1997) The climate response to CO2 of the Hadley Centre coupled aogcm with and without flux adjustment. Geophys Res Lett 24:1943–1946

    CrossRef  Google Scholar 

  • Griffies SM, Böning C, Bryan FO, Chassingnet EP, Gerdes R, Hasumi H, Hirst A, Treguier A-M, Webb D (2000) Developments in ocean climate modeling. Ocean Model 2:123–190

    CrossRef  Google Scholar 

  • Hahn CJ, Warren SG (2007) A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide, Tech. Rep. Documentation, 70pp, Carbon Dioxide Information Analysis Center (CDIAC), Department of Energy, Oak Ridge, Tennessee

    Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    CrossRef  Google Scholar 

  • Hewitt CD, Senior CS, Mitchell J (2001) The impact of dynamic sea-ice on the climate sensitivity of a GCM: a study of past, present, and future climates. Clim Dyn 17:655–668

    CrossRef  Google Scholar 

  • Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    CrossRef  Google Scholar 

  • Hibler WD (1980) Modeling a variable thickness ice cover. Mon Weather Rev 108:1943–1973

    CrossRef  Google Scholar 

  • Hibler WD (1984) The role of sea ice dynamics in modeling CO2 increases. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity. Geophysical monograph 29, vol 5. American Geophysical Union, Washington, DC, pp 238–253

    Google Scholar 

  • Hirst AC, O’Farrell SP, Gordon HB (2000) Comparison of a coupled oceanatmosphere model with and without oceanic eddy-induced advection. Part I: Ocean spinup and control integrations. J Clim 13:139–163

    Google Scholar 

  • Holland DM, Mysak LA, Manak DK, Oberhuber JM (1993) Sensitivity study of a dynamic thermodynamic sea ice model. J Geophys Res 98:2561–2586

    CrossRef  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in the coupled model intercomparison project. Clim Dyn 21:221–232

    CrossRef  Google Scholar 

  • Holland MM, Bitz C, Weaver A (2001) The influence of sea ice physics on simulations of climate change. J Geophys Res 106:2441–2464

    CrossRef  Google Scholar 

  • Holland MM, Bitz CM, Hunke EC, Lipscomb WH, Schramm JL (2006) Influence of the sea ice thickness distribution on polar climate in CCSM3. J Clim 19:2398–2414

    CrossRef  Google Scholar 

  • Holloway G, Proshutinsky A (2007) Role of tides in Arctic ocean/ice climate. J Geophys Res 112:C04S06. doi:10.1029/2006JC003,643

    Google Scholar 

  • Hu Z-Z, Kuzmina SI, Bengtsson L, Holland DM (2004) Sea-ice change and its connection with climate change in the arctic in CMIP2 simulations. J Geophys Res 109:D10,106. doi:10.1029/2003JD004,454

    Google Scholar 

  • Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867

    CrossRef  Google Scholar 

  • Hunke EC, Zhang Y (2000) Comparison of sea ice dynamics models at high resolution. Mon Weather Rev 127:396–408

    CrossRef  Google Scholar 

  • Huwald H, Tremblay L-B, Blatter H (2005) A multilayer sigma-coordinate thermodynamic sea ice model: Validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data. J Geophys Res 110:C05,010. doi:10.1029/2004JC002,328

    Google Scholar 

  • Huybrechts P, Janssens I, Pocin C, Fichefet T (2002) The response of the greenland ice sheet to climate changes in the 21st century by interactive coupling of an aogcm with a thermomechanical ice-sheet model. Ann Glaciol 34:408–415

    Google Scholar 

  • IPCC (1992) Climate change 1992: the IPCC scientific assembly supplementary report. Cambridge University Press, Cambridge, 198pp

    Google Scholar 

  • IPCC (2007) Climate change 2007 the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996pp

    Google Scholar 

  • Jochum M, Danabasoglu G, Holland MM, Kwon Y, Large W (2008) Ocean viscosity and climate. J Geophys Res 113:C06017. doi:10.1029/2007JC004,515

    CrossRef  Google Scholar 

  • Kreyscher M, Harder M, Lemke P, Flato GM (2000) Results of the sea ice model intercomparison project: evaluation of sea ice rheology schemes for use in climate simulations. J Geophys Res 105:11,299–11,320

    Google Scholar 

  • Laxon S, Peacock N, Smith D (2003) High interannual variability of sea ice thickness in the Arctic region. Nature 425:947–950

    CrossRef  Google Scholar 

  • Lemke P, Owens W, Hibler W (1990) A coupled sea ice-mixed layer-pycnocline model for the weddell sea. J Geophys Res 95:9513–9525

    CrossRef  Google Scholar 

  • Lemke P, Hibler W, Flato G, Harder M, Kreyscher M (1997) On the improvement of sea ice ­models for climate simulations: the sea ice model intercomparison project. Ann Glaciol 25:183–187

    Google Scholar 

  • Lipscomb WH (2001) Remapping the thickness distribution in sea ice models. J Geophys Res 106:13,989–14,000

    Google Scholar 

  • Lipscomb WH, Hunke EC (2004) Modeling sea ice transport using incremental remapping. Mon Weather Rev 132:1341–1354

    CrossRef  Google Scholar 

  • Manabe S, Stouffer RJ, Spellman MJ, Bryan K (1991) Transcient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response. J Clim 4:785–818

    Google Scholar 

  • Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003) The max-planck-institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127

    CrossRef  Google Scholar 

  • Martin G, Ringer M, Pope V, Jones A, Dearden C, Hinton T (2006) The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model, HadGEM1. Part 1: Model description and global climatology. J Clim 19:147–168

    CrossRef  Google Scholar 

  • Maykut GA, Untersteiner N (1971) Some results from a time-dependent thermodynamic model of sea ice. J Geophys Res 76:1550–1575

    CrossRef  Google Scholar 

  • McFarlane NA, Boer GJ, Blanchet J-P, Lazare M (1992) The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J Clim 5:1013–1044

    CrossRef  Google Scholar 

  • McLaren AJ et al (2006) Evaluation of the sea ice simulation in a new coupled atmosphere-ocean climate model (HadGEM1). J Geophys Res 111:C12,014, doi:10.1029/2005JC003,033

    Google Scholar 

  • Meehl GA, Boer G, Covey C, Latif M, Stouffer R (2000) Coupled model intercomparison project. Bull Am Meteorol Soc 81:313–318

    CrossRef  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull Am Meteorol Soc. doi:10.1175/BAMS–88–9–1383

    Google Scholar 

  • Mikolajewicz U, Vizcaino M, Jungclaus J, Schurgers G (2007) Effect of ice sheet interactions in anthropogenic climate change simulations. Geophys Res Lett 34:L18706

    CrossRef  Google Scholar 

  • Moritz RE, Bitz CM (2000) Climate model underestimates natural variability of Northern Hemisphere sea ice extent. Science 288:927a

    CrossRef  Google Scholar 

  • Oberhuber JM (1993) Simulation of the Atlantic circulation with a coupled sea-ice-mixed layer-isopycnical general circulation model. Part I: model description. J Phys Oceanogr 23:808–829

    Google Scholar 

  • O’Farrell SP (1998) Investigation of the dynamic sea-ice component of a coupled atmosphere sea-ice general circulation model. J Geophys Res 103:15,751–15,782

    Google Scholar 

  • Oort AH (1974) Year-to-year variations in the energy balance of the arctic atmosphere. J Geophys Res 79:1253–1260

    CrossRef  Google Scholar 

  • Overland JE, Turet P (1994) Variability of the atmospheric energy flux across 70 N computed from the GFDL data set. In: Johannessen OM, Muench RD, Overland JE (eds) Polar oceans and their role in shaping the global environment. Geophysics Monograph 85. American Geophysical Union, Washington, DC

    Google Scholar 

  • Pedersen CA, Roeckner E, Lüthje M, Winther J-G (2009) A new sea ice albedo scheme including melt ponds for ECHAM5 general circulation model. J Geophys Res 114. doi:10.1029/2008JD010,440

    Google Scholar 

  • Pollard D, Thompson SL (1994) Sea-ice dynamics and co2 sensitivity in a global climate model. Atmos Ocean 32:449–467

    CrossRef  Google Scholar 

  • Proshutinsky A, Kowalik Z (2001) Preface to special section on Arctic Ocean Model Intercomparison Project (AOMIP) studies and results. J Geophys Res 112:C04S01. doi:10.1029/2006JC004,017

    Google Scholar 

  • Proshutinsky A et al (2001) The Arctic Ocean Model Intercomparison Project (AOMIP). EOS Trans Am Geophys Union 82(51):637–644

    CrossRef  Google Scholar 

  • Randall D et al (1998) Status of and outlook for large-scale modeling of atmosphere-ice-ocean interactions in the arctic. Bull Am Meteorol Soc 79:197–219

    CrossRef  Google Scholar 

  • Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the greenland ice sheet in a high co2 climate. J Clim 18:3409–3427

    CrossRef  Google Scholar 

  • Rind D, Healy R, Parkinson C, Martinson D (1995) The role of sea ice in 2XCO2 climate model sensitivity. 1. The total influence of sea ice thickness and extent. J Clim 8:449–463

    CrossRef  Google Scholar 

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the arctic sea ice cover. Geophys Res Lett 26:3469–3472

    CrossRef  Google Scholar 

  • Salas-Mélia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172

    CrossRef  Google Scholar 

  • Schmidt GA, Bitz CM, Mikolajewicz U, Tremblay LB (2004) Ice-ocean boundary conditions for coupled models. Ocean Model 7:59–74. doi:10.1016/S1463–5003(03)00,030–1

    CrossRef  Google Scholar 

  • Sellers WD (1969) A global climate model based on the energy balance of the earth-atmosphere system. J Appl Meteorol 8:392–400

    CrossRef  Google Scholar 

  • Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigaions of climate. J Phys Oceanogr 6:379–389

    CrossRef  Google Scholar 

  • Shupe MD, Intrieri JM (2004) Cloud radiative forcing of the arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle. J Clim 17:616–628

    CrossRef  Google Scholar 

  • Slingo JM (1987) The development and verification of a cloud prediction scheme for the ECMWF model. Q J R Meteorol Soc 113:899–927

    CrossRef  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34. doi:10.1029/2007GL029,703

    CrossRef  Google Scholar 

  • Sundqvist H, Berge E, Kristjánsson JE (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657

    CrossRef  Google Scholar 

  • Tao X, Walsh JE, Chapman WL (1996) An assessment of global climate model simulations of arctic air temperatures. J Clim 9:1060–1075

    CrossRef  Google Scholar 

  • Taylor PD, Feltham DL (2003) A model of melt pond evolution on sea ice. J Geophys Res 109:C12,007. doi:10.1029/2004JC002,361

    Google Scholar 

  • Uppala S et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    CrossRef  Google Scholar 

  • Vavrus SJ (1999) The response of the coupled Arctic sea ice-atmosphere system to orbital forcing and ice motion at 6 ka and 115 ka BP. J Clim 12:873–896

    CrossRef  Google Scholar 

  • Vavrus SJ, Harrison S (2003) The impact of sea-ice dynamics on the Arctic climate system. Clim Dyn 20:741–757

    Google Scholar 

  • Walsh J, Timlin M (2003) Northern Hemisphere sea ice simulations by global climate models. Polar Res 22:75–82

    CrossRef  Google Scholar 

  • Walsh JE, RG Crane (1992) A comparison of gcm simulations of Arctic climate. Geophys Res Lett 19:29–32

    CrossRef  Google Scholar 

  • Walsh JE, Kattsov VM, Chapman WL, Govorkova V, Pavlova T (2002) Comparison of arctic climate simultations by uncoupled and coupled global models. J Clim 15:1429–1446

    CrossRef  Google Scholar 

  • Wang M, Overland JE, Kattsov V, Walsh JE, Zhang X, Pavlova T (2007) Intrinsic versus forced variation in coupled climate model simulations over the arctic during the twentieth century. J Clim 20:1093–1107. doi:10.1175/JCLI4043.1

    CrossRef  Google Scholar 

  • Washington WM, Meehl GA (1989) Climate sensitivity due to increased co2: Experiments with a coupled atmosphere and ocean general circulation model. Clim Dyn 8:211–223

    Google Scholar 

  • Wetherald R, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1415

    CrossRef  Google Scholar 

  • Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Technol 17:525–531

    CrossRef  Google Scholar 

  • Wolff J-O, Maier-Reimer E, legutke S (1997) The Hamburg ocean primitive equation model. Tech. Rep., No. 13, German Climate Computer Center (DKRZ), Hamburg, 98pp

    Google Scholar 

  • Wyser K et al (2007) An evaluation of arctic cloud and radiation processes during the SHEBA year: Simulation results from eight arctic regional climate models. Clim Dyn 22. doi:10.1007/s00,382–007–0286–1

    Google Scholar 

  • Yukimoto S, Noda A, Uchiyama T, Kusunoki S (2006) Climate change of the twentieth through twenty-first centuries simulated by the MRI-CGCM2.3. Pap Meteorol Geophys 56:9–24

    CrossRef  Google Scholar 

  • Zhang J, Rothrock D (2000) Modeling arctic sea ice with an efficient plastic solution. J Geophys Res 108:3325–3338

    CrossRef  Google Scholar 

  • Zhang X, Walsh JE (2006) Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations. J Clim 19:1730–1747

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia M. Bitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bitz, C.M., Ridley, J.K., Holland, M., Cattle, H. (2012). Global Climate Models and 20th and 21st Century Arctic Climate Change. In: Lemke, P., Jacobi, HW. (eds) Arctic Climate Change. Atmospheric and Oceanographic Sciences Library, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2027-5_11

Download citation