Skip to main content

Human Embryonic Stem Cells Transplanted into Mouse Retina Induces Neural Differentiation

  • Chapter
  • First Online:

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 2))

Abstract

Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells can be transplanted and integrated into the retinas of adult mice as well-differentiated retinal cells. Thus these cells have the potential to be used to repair or regenerate diseased retina as cell replacement therapy in the future. The major concern with the possible transplantation of human ES (hES) or iPS cells in retinal diseases is, however, their ability to form tumors including mature and immature teratoma. In this review, we discuss the differentiation to retinal cells, including photoreceptor cells, and ganglion cells from hES or iPS cells transplanted into mouse retina. We also discuss possible strategies to overcome the major concern of potential teratoma formation and improve cell integration into host retina. Finally, we consider the future retinal cell therapy that may be used as a therapeutic strategy to treat retinal diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amato MA, Arnault E, Perron M (2004) Retinal stem cells in vertebrates: parallels and divergences. Int J Dev Biol 48:993–1001

    Article  PubMed  Google Scholar 

  • Aoki H, Hara A, Niwa M, Motohashi T, Suzuki T, Kunisada T (2007) An in vitro mouse model for retinal ganglion cell replacement therapy using eye-like structures differentiated from ES cells. Exp Eye Res 84:868–875

    Article  PubMed  CAS  Google Scholar 

  • Aoki H, Hara A, Niwa M, Yamada Y, Kunisada T (2009) In vitro and in vivo differentiation of human embryonic stem cells into retina-like organs and comparison with that from mouse pluripotent epiblast stem cells. Dev Dyn 238:2266–2279

    Article  PubMed  Google Scholar 

  • Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45:4251–4255

    Article  PubMed  Google Scholar 

  • Baker PS, Brown GC (2009) Stem-cell therapy in retinal disease. Curr Opin Ophthalmol 20:175–181

    Article  PubMed  Google Scholar 

  • Bhatia B, Singhal S, Jayaram H, Khaw PT, Limb GA (2010) Adult retinal stem cells revisited. Open Ophthalmol J 4:30–38

    Article  PubMed  CAS  Google Scholar 

  • Bomken S, Fiser K, Heidenreich O, Vormoor J (2010) Understanding the cancer stem cell. Br J Cancer 103:439–445

    Article  PubMed  CAS  Google Scholar 

  • Bunce C, Wormald R (2006) Leading causes of certification for blindness and partial sight in England & Wales. BMC Public Health 6:58

    Article  PubMed  Google Scholar 

  • Choo AB, Tan HL, Ang SN, Fong WJ, Chin A, Lo J, Zheng L, Hentze H, Philp RJ, Oh SK, Yap M (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26:1454–1463

    Article  PubMed  CAS  Google Scholar 

  • Comyn O, Lee E, MacLaren RE (2010) Induced pluripotent stem cell therapies for retinal disease. Curr Opin Neurol 23:4–9

    Article  PubMed  Google Scholar 

  • Dahlmann-Noor A, Vijay S, Jayaram H, Limb A, Khaw PT (2010) Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve. Can J Ophthalmol 45:333–341

    Article  PubMed  Google Scholar 

  • Donovan PJ, Gearhart J (2001) The end of the beginning for pluripotent stem cells. Nature 414:92–97

    Article  PubMed  CAS  Google Scholar 

  • Hara A, Niwa M, Kunisada T, Yoshimura N, Katayama M, Kozawa O, Mori H (2004) Embryonic stem cells are capable of generating a neuronal network in the adult mouse retina. Brain Res 999:216–221

    Article  PubMed  CAS  Google Scholar 

  • Hara A, Niwa M, Kumada M, Aoki H, Kunisada T, Oyama T, Yamamoto T, Kozawa O, Mori H (2006) Intraocular injection of folate antagonist methotrexate induces neuronal differentiation of embryonic stem cells transplanted in the adult mouse retina. Brain Res 1085:33–42

    Article  PubMed  CAS  Google Scholar 

  • Hara A, Aoki H, Taguchi A, Niwa M, Yamada Y, Kunisada T, Mori H (2008) Neuron-like differentiation and selective ablation of undifferentiated embryonic stem cells containing suicide gene with Oct-4 promoter. Stem Cells Dev 17:619–627

    Article  PubMed  CAS  Google Scholar 

  • Hara A, Taguchi A, Aoki H, Hatano Y, Niwa M, Yamada Y, Kunisada T (2010) Folate antagonist, methotrexate induces neuronal differentiation of human embryonic stem cells transplanted into nude mouse retina. Neurosci Lett 477:138–143

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Jin ZB, Okamoto S, Mandai M, Takahashi M (2009) Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. J Genet 88:417–424

    Article  PubMed  Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  PubMed  CAS  Google Scholar 

  • Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:73–79

    Article  PubMed  CAS  Google Scholar 

  • Lefort N, Feyeux M, Bas C, Feraud O, Bennaceur-Griscelli A, Tachdjian G, Peschanski M, Perrier AL (2008) Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol 26:1364–1366

    Article  PubMed  CAS  Google Scholar 

  • Levkovitch-Verbin H, Sadan O, Vander S, Rosner M, Barhum Y, Melamed E, Offen D, Melamed S (2010) Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection. Invest Ophthalmol Vis Sci 51:6394–6400

    Article  PubMed  Google Scholar 

  • MacLaren RE (1999) Re-establishment of visual circuitry after optic nerve regeneration. Eye (Lond) 13(Pt 3a):277–284

    Article  Google Scholar 

  • Marquardt T, Gruss P (2002) Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci 25:32–38

    Article  PubMed  CAS  Google Scholar 

  • Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci USA 106:16698–16703

    Article  PubMed  CAS  Google Scholar 

  • Osakada F, Ikeda H, Sasai Y, Takahashi M (2009) Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 4:811–824

    Article  PubMed  CAS  Google Scholar 

  • Parrilla-Reverter G, Agudo M, Sobrado-Calvo P, Salinas-Navarro M, Villegas-Perez MP, Vidal-Sanz M (2009) Effects of different neurotrophic factors on the survival of retinal ganglion cells after a complete intraorbital nerve crush injury: a quantitative in vivo study. Exp Eye Res 89:32–41

    Article  PubMed  CAS  Google Scholar 

  • Prokhorova TA, Harkness LM, Frandsen U, Ditzel N, Schroder HD, Burns JS, Kassem M (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 18:47–54

    Article  PubMed  CAS  Google Scholar 

  • Shatz CJ (1996) Emergence of order in visual system development. J Physiol Paris 90:141–150

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949

    Article  PubMed  CAS  Google Scholar 

  • Sugarman J (2008) Human stem cell ethics: beyond the embryo. Cell Stem Cell 2:529–533

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai CC, Chien CL, Nagasaki T, Lin CS, Tsang SH (2010) Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 89:911–919

    Article  PubMed  Google Scholar 

  • Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH (2000) Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci 16:197–205

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin, II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Hara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hara, A. et al. (2012). Human Embryonic Stem Cells Transplanted into Mouse Retina Induces Neural Differentiation. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 2. Stem Cells and Cancer Stem Cells, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2016-9_31

Download citation

Publish with us

Policies and ethics